LESSON PLAN SUBJECT: REFRIGERATION AND AIR CONDITIONING(TH-5) FACULTY: MRS SUNITA SAMAL ACCADEMIC SESSION: 2024-25(W) SEMESTER: 5TH SEC: B HOD (Mech.Engg.) | | 3 RD (4) | | | | | 2 ND (4) | | | | | 1 ⁵⁷ (4) | | | WEEK | SUBJECT: REFRIGERATION AND AIR CONDITIONING(TH-5) | DISCIPLINE: MECHANICAL ENGINEERING | |---|---------------------|----------|--|---|--|---|---|--|--|--|--|--------------|--------------------------------------|----------------------------|---|--| | 19/07/24 | 18/07/24 | 16/07/24 | 15/07/24 | 12/07/24 | 11/07/24 | | 09/07/24 | 08/07/24 | 05/07/24 | 04/07/24 | 02/07/24 | 01/07/24 | | CLASS DAY | NO. OF DAYS/ PER WEEK CLASS ALLOTTED: 04 PERIODS PER WEEK (Mon-1 period , Tues-1 period,Thu-1 period, Fri-1 period) | SEMESTER: 5 TH (B) | | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | | NO OF PERIODS
AVAILABLE | LASS ALLOTTED: 04
WEEK
bd,Thu-1 period, Fri-1 | тн (в) | | 2.2.4 Cycle with superheated vapors before compression. | | | 2.2.1 Cycle with dry saturated vapors after compression. | 2.1 schematic diagram of simple vapors compression refrigeration system | 2.1 schematic diagram of simple vapors compression refrigeration system? | 2.0 SIMPLE VAPOUR COMPRESSION REFRIGERATION | 1.3.1 Calculation of COP of Bell-Coleman cycle and numerical on it. | 1.3 Principle of working of open and closed air system of refrigeration. | 1.3 Principle of working of open and closed air system of refrigeration. | 1.2 Definition of COP, Refrigerating effect (R.E.) | 1.0 AIR REFRIGERATION CYCLE. 1.1 Definition of refrigeration and unit of refrigeration | CONDITIONING | INTEGRATION ON REFRIGERATION AND AIR | THEORY TOPICS | SEMESTER FROM DATE: 01-07-2024 TO DATE: 08-11-2024
NO. OF WEEKS: 19WEEKS | NAME OF THE TEACHING FACULTY: MRS SUNITA SAMAL | | | | | | | | | | | | T | | | | | | 100 | | | | |--|---|---|---|------------------------|--|---------------------|---|--------------|----------------------|---|--|--|---|--|--|--|--|---|-------------| | | 8 TH (3) | | | 7 TH (3) | | | 618(4) | ! | | | | | S TH (4) | | | | 4 TH (4) | | | | 23/08/24 | 22/08/24 | 20/08/24 | 16/08/24 | 13/08/24 | 12/08/24 | | 09/08/24 | 08/08/24 | 06/08/24 | 05/08/24 | 02/08/24 | 01/08/24 | 30/07/24 | 29/07/24 | 26/07/24 | 25/07/24 | 23/07/24 | 22/07/24 | | | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | LESSON PLAN | | 4.3 EVAPORATORS 1.6.1 Principle of working and constructional details of an evaporator. | 4.2.2 Heat rejection ratio. 4.2.3 Cooling tower and spray pond. | 4.2 CONDENSERS 4.2.1 Principle of working and constructional details of air cooled and water cooled condenser | 4.1.4 Hermetically and semi hermetically sealed compressor. | 4.1.3 Important terms. | 4.1.1 Principle of working and constructional details of reciprocaries rotary compressors. | rotary compressors. | 4.0 REFRIGERATION EQUIPMENTS 4.1 REFRIGERANT COMPRESSORS 4.1.1 Principle of working and constructional details of reciprocating and | CLASS TEST-1 | 3.4.Numerical on COP | 3.3 COP of an ideal vapour absorption retrigeration system. | 3.2 Practical vapour absorption retrigeration system | 3.2 Practical vapour absorption retrigeration system | 3.1 Simple vapour absorption refrigeration system | 2.2.7 Numerical on above (determination of the system) | 2.2.7 Numerical on above (determination of COP, mass flow) | 2.2.7 Numerical on above (determination of COF, mass flow) | 2.2.6 Representation of above cycle on temperature entropy and proceed on temperature entropy. | 2.2.5 Cycle with sub cooling of refrigerative | Ala | | | | | | T | | | | | | T | | | | | | T | | | | | | | | T | | | | | | | |---|------------------------|---------|--|-------------------------------|--------------------|-----------------|---------------------------|--------------------|-----------------------------------|------------------------------|--|--|---|-----------------------|------------------------------------|---|--------------------------------------|------------------|------------------------------------|---------------------------------|----------------------|----------------------|-----------------------------|---|--|--|---------------------------|--|----------------------------|-------------| | | 13 (4) | 12TH/// | | | | | 12'''(4) | | | | | | 11'"(4) | ! | | | | | | 10 TH (4) | | | | | | | 9 TH (3) | | | | | | 24/09/24 | | | 23/09/24 | | 20/09/24 | | | 19/09/24 | 17/09/24 | 13/09/24 | 12/09/24 | 10000 | 10/09/24 | | 09/09/24 | | 06/09/24 | 05/09/24 | 03/09/24 | | | | 02/09/24 | | 30/08/24 | | 29/08/24 | 27/08/24 | | | | ш | | | 1 | F | _ | | 1 | | 1 | 1 | - | | 1 | 1- | 1 | 1 | | 1 | 1 | | ٢ | | | - | | ۲ | 2 | 1 | LESSON PLAN | | 6.2 Adiabatic saturation of air by evaporation of water | 6.1 Psychometric terms | SYSTEMS | 6.0 PSYCHOMETRICS & COMFORT AIR CONDITIONING | 5.3.5 frost free refrigerator | 5.3.4 water cooler | 5.3.3 ice plant | 5.3.2 dairy refrigeration | 5.3.1 cold storage | 5.3 Applications of refrigeration | 5.2.7 Substitute for CFC 4.5 | 5.2.6 commonly used refrigerants, K-11, K-12, K-22, K-13-44, K-717 | 5.2.5 Chemical properties of refrigerants. | 5.2.4 Thermodynamic Properties of Kefrigerants. | INTERNAL ASSESSMENT-I | 5.2.3 Designation of refrigeralit. | 5.2.2 Desirable properties of an ideal refrigerant. | 5.2.1 Classification of refrigerants | 5.2 REFRIGERANTS | 5.1.3 Thermostatic expansion valve | 5.1.2 Automatic expansion valve | 5.1.1 Capillary tube | 5.1 EXPANSION VALVES | APPLICATION OF REFRIGERANTS | 5.0 REFRIGERANT FLOW CONTROLS, REFRIGERANTS & | evaporator4.2.2 Pressure regulation valves | 1.6.3 Bare tube coil evaporator, linned evaporator, silvin | evaporator ehell and tube | 1.6.3 Bare tube coil evaporator, finned evaporator, silen and tube | 1.6.2 Types of evaporator. | | | н | | | | |---|----|---|---| | н | | | | | н | | | | | ш | | | | | п | | | | | н | ъ | | | | н | | | | | н | c | | | | н | п | 4 | ï | | н | a | | | | п | C | 1 | 7 | | н | 3 | 1 | | | н | C. | 1 | , | | н | О | = | | | ı | ı | 1 | | | н | • | | ı | | 1 | × | - | ٠ | | п | P. | 4 | , | | п | | • | ۰ | | н | v | | | | 1 | л | 1 | ľ | | н | v | ١ | ۰ | | н | в | • | | | 1 | 8 | | | | 4 | - | × | į | | н | × | è | , | | н | ıc | | | | ı | | | T | | | T | | | | | | | | | | | T | | | | | | | T | | | | | |-----------------------------------|-----------------------------------|----------|---------------|----------------------|----------------------|----------------------|------------------------|------------------------|------------------------|-------------------------------------|------------------------------------|---|---|---|------------------------------|---|-----------------|--------------------------|------------------------|-----------------|--|---|----------------------------------|------------------------------------|------------------------------------|----------------------------|----------------------------------|-------------| | | 19 TH (4) | | | 3 | 18 TH (3) | | | 17 TH (4) | | | | | 16 ^{1H} (4) | | | | 15 [™] | | | 14 (4) | 1ATH(A) | | | | | | | | | 08/11/24 | 07/11/24 | 05/11/24 | 04/11/24 | 01/11/24 | 29/10/24 | 28/10/24 | 25/10/24 | 24/10/24 | 22/10/24 | 21/10/24 | 18/10/24 | | 17/10/24 | 15/10/24 | | 14/10/24 | | 04/10/24 | 03/10/24 | | 01/10/24 | | 30/9/24 | | 27/09/24 | | 26/09/24 | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | | 1 | | 1 | | | 1 | | 1 | | 1 | | 1 | LESSON PLAN | | Previous year question discussion | Previous year question discussion | Revision | CLASS TEST-II | DOUBT CLEARING CLASS | DOUBT CLEARING CLASS | DOUBT CLEARING CLASS | 7.6 Numerical on above | 7.6 Numerical on above | 7.6 Numerical on above | 7.5 Summer air-conditioning system. | 7.4 Winter Air Conditioning System | 7.3 Classification of air-conditioning system | 7.2 Equipment used in air-conditioning. | 7.1 Factors affecting comfort air conditioning. | 7.0 AIR CONDITIONING SYSTEMS | 6.5 Effective temperature and Comfort chart | PUJA VACATION | 6.4.8 Problems on above. | 6.4.7 Adiabatic mixing | 6.4.6 SHF, BPF, | 6.4.5 Total heating of a cooling process | 6.4.4 Adiabatic cooling with humidification | 6.4.3 Heating and Humidification | 6.4.2 Cooling and Dehumidification | 6.4.1 Sensible heating and Cooling | 6.4 Psychometric processes | 6.3 Psychometric chart and uses. | AN | #### EXTENTION OF CLOSING OF ATTENDANCE | | | | | | | | WEEK | | |--|--|--|--|--|--|-----------|---------------|--| | | | | | | | 20000 | CLASS DAY | | | | | | | | | AVAILABLE | NO OF PERIOD | | | | | | | | | | THEORY TOPICS | | P 5