
PREPARED BY -BHABODEEPIKA MOHANTY

PREPARED BY -BHABODEEPIKA MOHANTY

SYLLABUS

Unit-1: Basics of Digital Electronics

Number System-Binary, Octal, Decimal, Hexadecimal - Conversion from one

system to another number system.

Arithmetic Operation-Addition, Subtraction, Multiplication, Division, 1’s & 2’s

complement of Binary numbers& Subtraction using complements method

Digital Code & its application & distinguish between weighted & non-weight

Code, Binary codes, excess-3 and Gray codes.

Logic gates: AND,OR,NOT,NAND,NOR, Exclusive-OR, Exclusive-NOR--

Symbol, Function, expression, truth table & timing diagram

 Universal Gates& its Realisation

 Boolean algebra, Boolean expressions, Demorgan’s Theorems.

 Represent Logic Expression: SOP & POS forms

Karnaugh map (3 & 4 Variables)&Minimization of logical expressions ,don’t

care conditions

Unit-2: Combinational logic circuits

Half adder, Full adder, Half Subtractor, Full Subtractor, Serial and Parallel

Binary 4 bit adder.

Multiplexer (4:1), De- multiplexer (1:4), Decoder, Encoder, Digital comparator (3

Bit)

 Seven segment Decoder

(Definition, relevance, gate level of circuit Logic circuit, truth table, Applications

of above)

Unit-3: Sequential logic Circuits

 Principle of flip-flops operation, its Types,

 SR Flip Flop using NAND,NOR Latch (un clocked)

Clocked SR,D,JK,T,JK Master Slave flip-flops-Symbol, logic Circuit, truth

table and applications

 Concept of Racing and how it can be avoided.

PREPARED BY -BHABODEEPIKA MOHANTY

Unit-4: Registers, Memories & PLD

Shift Registers-Serial in Serial -out, Serial- in Parallel-out, Parallel in serial out

and Parallel in parallel out

 Universal shift registers-Applications.

 Types of Counter & applications

Binary counter, Asynchronous ripple counter (UP & DOWN), Decade

counter. Synchronous counter, Ring Counter.

 Concept of memories-RAM, ROM, static RAM, dynamic RAM,PS RAM

 Basic concept of PLD & applications

Unit-5: A/D and D/A Converters

 Necessity of A/D and D/A converters.

 D/A conversion using weighted resistors methods.

 D/A conversion using R-2R ladder (Weighted resistors)network.

 A/D conversion using counter method.

 A/D conversion using Successive approximate method

Unit-6: LOGIC FAMILIES

 Various logic families &categories according to the IC fabrication process

Characteristics of Digital ICs- Propagation Delay, fan-out, fan-in, Power

Dissipation ,Noise Margin ,Power Supply requirement &Speed with Reference to

logic families.

Features, circuit operation &various applications of TTL(NAND), CMOS

(NAND & NOR)

PREPARED BY -BHABODEEPIKA MOHANTY

Unit-1: Basics of Digital Electronics

INTRODUCTION:-

 The term digital refers to a process that is achieved by using discrete

unit.

 In number system there are different symbols and each symbol has

an absolute value and also has place value.

RADIX OR BASE:-

 The radix or base of a number system is defined as the number of

different digits which can occur in each position in the number

system.

RADIX POINT :-

 The generalized form of a decimal point is known as radix point. In

any positional number system the radix point divides the integer and

fractional part.

Nr = [Integer part .Fractional part]

↑

Radix point

NUMBER SYSTEM:-

In general a number in a system having base or radix ‘ r ’ can be written as

an an-1 an-2 …………… a0 . a -1 a -2 a - m

This will be interpreted as

Y = an x rn + an-1 x rn-1 + an-2 x rn-2 + ……… + a0 x r0 + a-1 x r -1 + a-2 x r -2 +…

+a -m x r –m

Where Y = value of the entire number

PREPARED BY -BHABODEEPIKA MOHANTY

an = the value of the nth digit

r = radix

TYPES OF NUMBER SYSTEM:-

 There are four types of number systems. They are:-

1. Decimal number system

2. Binary number system

3. Octal number system

4. Hexadecimal number system

DECIMAL NUMBER SYSTEM:-

 The decimal number system contain ten unique symbols

0,1,2,3,4,5,6,7,8 and 9. In decimal system 10 symbols are involved, so

the base or radix is 10.

 It is a positional weighted system.

 The value attached to the symbol depends on its location with respect

to the decimal point.

In general,

dn dn-1 dn-2 …………… d0 . d -1 d -2 d - m

is given by

(dn x 10n) + (dn-1 x 10n-1) + (dn-2 x 10n-2) + … + (d0 x 100) + (d-1 x 10 -1) + (d-2 x

10 -2) +…+(d -m x 10 –m)

For example:-

9256.26 = 9 x 1000 + 2 x 100 + 5 x 10 + 6 x 1 + 2 x (1/10) + 6 x (1/100)

= 9 x 103 + 2 x 102 + 5 x 101 + 6 x 100 + 2 x 10-1 + 6 x 10-2

BINARY NUMBER SYSTEM:-

 The binary number system is a positional weighted system. The base

or radix of this number system is 2.

PREPARED BY -BHABODEEPIKA MOHANTY

 It has two independent symbols. The symbols used are 0 and 1. A

binary digit is called a bit.

The binary point separates the integer and fraction parts.

In general

dn dn-1 dn-2 …………… d0 . d -1 d -2 d – k

is given by

(dn x 2n) + (dn-1 x 2n-1) + (dn-2 x 2n-2) + ….+ (d0 x 20) + (d-1 x 2 -1) + (d-2 x 2 -2)

+….+(d -k x 2 –k)

OCTAL NUMBER SYSTEM:-

 It is also a positional weighted system. Its base or radix is 8.

 It has 8 independent symbols 0,1,2,3,4,5,6 and 7.

 Its base 8 = 23 , every 3- bit group of binary can be represented by an

octal digit.

HEXADECIMAL NUMBER SYSTEM:-

 The hexadecimal number system is a positional weighted system.

The base or radix of this number system is 16.

 The symbols used are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F

 The base 16 = 24 , every 4 – bit group of binary can be represented by

an hexadecimal digit.

CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER :-

BINARY NUMBER SYSTEM:-

Binary to decimal conversion:-

In this method, each binary digit of the number is multiplied by its

positional weight and the product terms are added to obtain decimal

number.

PREPARED BY -BHABODEEPIKA MOHANTY

For example:

Convert (10101)2 to decimal.

Solution : (Positional weight) 24 23 22 21 20

Binary number 10101

= (1 x 24) + (0 x 23) + (1x 22) + (0 x 21) + (1 x 20)

= 16 + 0+ 4+ 0+ 1

= (21)10

Convert (111.101)2 to decimal.

Solution:

(111.101)2 = (1 x 22) + (1 x 21) + (1x 20) + (1 x 2 -1) + (0 x 2 -2) + (1 x 2 -3)

= 4+ 2+ 1 + 0.5 + 0 + 0.125

= (7.625)10

Binary to Octal conversion:-

For conversion binary to octal the binary numbers are divided into groups

of 3 bits each, starting at the binary point and proceeding towards left and

right.

Octal Binary Octal Binary

0 000 4 100

1 001 5 101

2 010 6 110

3 011 7 111

For example:

(i) Convert (101111010110.110110011)2 into octal.

PREPARED BY -BHABODEEPIKA MOHANTY

Solution :

Group of 3 bits are 101 111 010 110 . 110 110 011

Convert each group into

octal =

5 7 2 6 . 6 6 3

The result is (5726.663)8

(ii) Convert (10101111001.0111)2 into octal.

Solution :

Convert each group into octal = 2 5 7 1 . 3 4

The result is (2571.34)8

Binary to Hexadecimal conversion:-

For conversion binary to hexadecimal number the binary numbers starting

from the binary point, groups are made of 4 bits each, on either side of the

binary point

Hexadecimal Binary Hexadecimal Binary

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

Binary number 10 101 111 001 . 011 1

Group of 3 bits are = 010 101 111 001 . 011 100

PREPARED BY -BHABODEEPIKA MOHANTY

For example:

Convert (1011011011)2 into hexadecimal.

Solution:

Convert (01011111011.011111)2 into hexadecimal.

Solution:

Convert each group into octal = 2 F B . 7 C

The result is (2FB.7C)16

DECIMAL NUMBER SYSTEM:-

Decimal to binary conversion:-

 In the conversion the integer number are converted to the desired

base using successive division by the base or radix.

For example:

Convert (52)10 into binary.

Solution:

 Divide the given decimal number successively by 2 read the integer

part remainder upwards to get equivalent binary number. Multiply

the fraction part by 2. Keep the integer in the product as it is and

multiply the new fraction in the product by 2. The process is

Given Binary number 10 1101 1011

Group of 4 bits are 0010 1101 1011

Convert each group into hex

The result is (2DB)16

= 2 D B

Given Binary number 010 1111 1011 . 0111 11

Group of 3 bits are = 0010 1111 1011 . 0111 1100

PREPARED BY -BHABODEEPIKA MOHANTY

continued and the integer are read in the products from top to

bottom.

2 52 — 0

2 26 — 0

2 13 — 0

2 6 — 1

2 3 — 0

2 1 — 1

0 — 1

Result of (52)10 is (110100)2

Convert (105.15)10 into binary. Solution:

Integer part Fraction part

2 105
0.15 x 2 = 0.30

2 52 ― 1 0.30 x 2 = 0.60

2 26 ― 0 0.60 x 2 = 1.20

2 13 ― 0 0.20 x 2 = 0.40

2 6 ― 1 0.40 x 2 = 0.80

2 3 ― 0 0.80 x 2 = 1.60

2 1 ― 1

 0 ― 1

Result of (105.15)10 is (1101001.001001)2

PREPARED BY -BHABODEEPIKA MOHANTY

Decimal to octal conversion:-

 To convert the given decimal integer number to octal, successively

divide the given number by 8 till the quotient is 0. To convert the

given decimal fractions to octal successively multiply the decimal

fraction and the subsequent decimal fractions by 8 till the product is 0

or till the required accuracy is obtained.

For example:

(i) Convert (378.93)10 into octal. Solution:

8 378 0.93 x 8 = 7.44

8 47 ― 2 0.44 x 8 = 3.52

8 5 ― 7 0.52 x 8 = 4.16
 0 ― 5 0.16 x 8 = 1.28

Result of (378.93)10 is (572.7341)8

Decimal to hexadecimal conversion:-

The decimal to hexadecimal conversion is same as octal.

For example:

(i) Convert (2598.675)10 into hexadecimal.

Solution:

Remainder

 Decima

l

Hex Hex

16 2598 0.675 x 16 = 10.8 A

16 162 — 6 6 0.800 x 16 = 12.8 C

16 10 — 2 2 0.800 x 16 = 12.8 C

0 — 10 A 0.800 x 16 = 12.8 C

PREPARED BY -BHABODEEPIKA MOHANTY

Result of (2598.675)10 is (A26.ACCC)16

OCTAL NUMBER SYSTEM:-

Octal to binary conversion:-

 To convert a given a octal number to binary, replace each octal digit

by its 3- bit binary equivalent.

For example:

Convert (367.52)8 into binary.

Solution:

Given Octal number is

3

6 7 . 5 2

Convert each group octal to binary = 011 110 111 . 101 010

Result of (367.52)8 is (011110111.101010)2

Octal to decimal conversion:-

 For conversion octal to decimal number, multiply each digit in the

octal number by the weight of its position and add all the product

terms

For example: -

Convert (4057.06) 8 to decimal Solution:

(4057.06) 8 = 4 x 83 + 0 x 82 + 5 x 81 + 7 x 80 + 0 x 8 – 1 + 6 x 8- 2

= 2048 + 0 + 40 + 7 + 0 +0.0937

= (2095. 0937)10

PREPARED BY -BHABODEEPIKA MOHANTY

Result is (2095.0937)10

Octal to hexadecimal conversion:-

For conversion of octal to Hexadecimal, first convert the given octal

number to binary and then binary number to hexadecimal.

For example :-

Convert (756.603)8 to hexadecimal.

Solution :-

Given octal no. 7 5 6 . 6 0 3

Convert each octal digit to

binary

= 111 101 110 . 110 000 011

Group of 4bits are = 0001 1110 1110 . 1100 0001 1000

Convert 4 bits group to hex.

Result is (1EE.C18)16

= 1 E E . C 1 8

HEXADECIMAL NUMBER SYSTEM :-

Hexadecimal to binary conversion:-

 For conversion of hexadecimal to binary, replace hexadecimal digit

by its 4 bit binary group.

For example:

Convert (3A9E.B0D)16 into binary.

Solution:

Given Hexadecimal number is 3 A 9 E . B 0 D

Convert each hexadecimal = 0011 1010 1001 1110 . 1011 0000 1101 digit to

4 bit binary

PREPARED BY -BHABODEEPIKA MOHANTY

Result of (3A9E.B0D)8 is (0011101010011110.101100001101)2

Hexadecimal to decimal conversion:-

 For conversion of hexadecimal to decimal, multiply each digit in the

hexadecimal number by its position weight and add all those product

terms.

For example: -

Convert (A0F9.0EB)16 to decimal

Solution:

(A0F9.0EB)16 = (10 x 163)+(0 x 162)+(15 x 161) +(9 x 160) +(0 x 16 – 1) +(14

x 16- 2) +(11 x 16-3)

= 40960 + 0 + 240 + 9 + 0 +0.0546 + 0.0026

= (41209.0572)10

Result is (41209.0572)10

Hexadecimal to Octal conversion:-

 For conversion of hexadecimal to octal, first convert the given

hexadecimal number to binary and then binary number to octal.

For example :-

Convert (B9F.AE)16 to octal.

Solution :-

Given hexadecimal no.is

B

9 F .

A E

Convert each hex. digit to

binary

= 1011 1001 1111 . 1010 1110

Group of 3 bits are = 101 110 011 111

.

101 011 100

PREPARED BY -BHABODEEPIKA MOHANTY

Convert 3 bits group to octal.

Result is (5637.534)8

= 5 6 3 7

.

5 3 4

BINARY ARITHEMATIC OPERATION :-

BINARY ADDITION:-

 The binary addition rules are as follows

0 + 0 = 0 ; 0 + 1 = 1 ; 1 + 0 = 1 ; 1 + 1 = 10 , i.e 0 with a carry of 1

For example :-

Add (100101)2 and (1101111)2.

Solution :-

1 0 0 1 0 1

+ 1 1 0 1 1 1 1

1 0 0 1 0 1 0 0

Result is (10010100)2

BINARY SUBTRACTION:-

 The binary subtraction rules are as follows

0 - 0 = 0 ; 1 - 1 = 0 ; 1 - 0 = 1 ; 0 - 1 = 1 , with a borrow of 1

For example :-

Substract (111.111)2 from (1010.01)2.

Solution :- 1 0 1 0 . 0 1 0

- 1 1 1 . 1 1 1

0 0 1 0 .0 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

Result is (0010.011)2

BINARY MULTIPLICATION:-

 The binary multiplication rules are as follows 0 x 0 = 0 ; 1 x 1 = 1 ; 1 x

0 = 0 ; 0 x 1 = 0

For example :-

Multiply (1101)2 by (110)2. Solution :-

 1 1 0 1

x 1 1 0

 0 0 0 0

 1 1 0 1

+ 1 1 0 1

1 0 0 1 1 1 0

Result is (1001110)2

BINARY DIVISION:-

 The binary division is very simple and similar to decimal number

system. The division by ‘0’ is meaningless. So we have only 2 rules

0 ÷ 1 = 0

1 ÷ 1 = 1

For example :-

Divide (10110)2 by (110)2.

Solution :-

PREPARED BY -BHABODEEPIKA MOHANTY

110) 101101 (111.1

- 110

1010

110

1001

110

110

110

000

Result is (111.1)2

1’s COMPLEMENT REPRESENTATION :-

 The 1’s complement of a binary number is obtained by changing each

0 to 1 and each 1 to 0.

For example :-

Find (1100)2 1’s complement.

Solution :-

Given 1 1 0 0

1’s complement is 0 0 1 1

Result is (0011)2

PREPARED BY -BHABODEEPIKA MOHANTY

2’s COMPLEMENT REPRESENTATION :-

 The 2’s complement of a binary number is a binary number which is

obtained by adding 1 to the 1’s complement of a number i.e.

 2’s complement = 1’s complement + 1

For example :-

Find (1010)2 2’s complement.

Solution :-

Given 1 0 1 0

1’s complement is 0 1 0 1

+ 1

2’s complement 0 1 1 0

Result is (0110)2

SIGNED NUMBER :-

 In sign – magnitude form, additional bit called the sign bit is placed

in front of the number. If the sign bit is 0, the number is positive. If it

is a 1, the number is negative.

For example:-

0 1 0 1 0 0 1 = +41

↑ Sign bit

1 1 0 1 0 0 1 = -41

↑ Sign bit

PREPARED BY -BHABODEEPIKA MOHANTY

SUBSTRACTION USING COMPLEMENT METHOD :-

1’s COMPLEMENT:-

 In 1’s complement subtraction, add the 1’s complement of subtrahend

to the minuend. If there is a carry out, then the carry is added to the

LSB. This is called end around carry. If the MSB is 0, the result is

positive. If the MSB is 1, the result is negative and is in its 1‘s

complement form. Then take its 1’s complement to get the magnitude

in binary.

For example:-

Subtract (10000)2 from (11010)2 using 1’s complement.

Solution:-

1 1 0 1 0 1 1 0 1 0 = 26

- 1 0 0 0 0 => + 0 1 1 1 1 (1’s complement) = - 16

 Carry → 1 0 1 0 0 1 + 10

 + 1

 0 1 0 1 0 = +10

Result is +10

2’s COMPLEMENT:-

 In 2’s complement subtraction, add the 2’s complement of

subtrahend to the minuend. If there is a carry out, ignore it. If the

MSB is 0, the result is positive. If the MSB is 1, the result is negative

and is in its 2‘s complement form. Then take its 2’s complement to get

the magnitude in binary.

PREPARED BY -BHABODEEPIKA MOHANTY

For example:-

Subtract (1010100)2 from (1010100)2 using 2’s complement.

Solution:-

 1 0 1 0 1 0 0 1 0 1 0 1 0 0 = 84

- 1 0 1 0 1 0 0 => + 0 1 0 1 1 0 0 (2’s complement) = - 84_

 1 0 0 0 0 0 0 0 (Ignore the carry)

0 (result = 0)

 0

 =

Hence MSB is 0. The answer is positive. So it is +0000000 = 0

DIGITAL CODES:-

 In practice the digital electronics requires to handle data which may

be numeric, alphabets and special characters. This requires the

conversion of the incoming data into binary format before it can be

processed. There is various possible ways of doing this and this

process is called encoding. To achieve the reverse of it, we use

decoders.

WEIGHTED AND NON-WEIGHTED CODES:-

There are two types of binary codes:-

1. Weighted binary codes

2. Non- weighted binary codes

 In weighted codes, for each position (or bit) ,there is specific weight

attached.

For example, in binary number, each bit is assigned particular weight 2n

where ‘n’ is the bit number for n = 0,1,2,3,4 the weights are 1,2,4,8,16

respectively.

Example :- BCD

PREPARED BY -BHABODEEPIKA MOHANTY

Non-weighted codes are codes which are not assigned with any weight to

each digit position, i.e., each digit position within the number is not

assigned fixed value.

Example:- Excess – 3 (XS -3) code and Gray codes

BINARY CODED DECIMAL (BCD):-

BCD is a weighted code. In weighted codes, each successive digit from

right to left represents weights equal to some specified value and to get the

equivalent decimal number add the products of the weights by the

corresponding binary digit. 8421 is the most common because 8421 BCD is

the most natural amongst the other possible codes.

For example:-

(567)10 is encoded in various 4 bit codes.

Solution:-

Decimal → 5 6 7

8421 code → 0101 0110 0111

6311 code → 0111 1000 1001

5421 code → 1000 0100 1010

BCD ADDITION:-

Addition of BCD (8421) is performed by adding two digits of binary,

starting from least significant digit. In case if the result is an illegal code

(greater than 9) or if there is a carry out of one then add 0110(6) and add the

resulting carry to the next most significant.

For example:-

PREPARED BY -BHABODEEPIKA MOHANTY

Add 679.6 from 536.8 using BCD addition.

Solution:-

6 7 9 . 6 0110 0111 1001 . 0110 (679.6 in BCD)

+ 5 3 6 . 8 =>+ 0101 0011 0110 . 1000 (536.8 in BCD)

1 2 1 6 . 4 1011 1010 1111 . 1110 (All are illegal codes)

 + 0110 +0110 +0110 .+0110 (Add 0110 to each)

 0001 0010 0001 0110 . 0100

 1 2 1 6 . 4 (corrected sum = 1216.4)

Result is 1216.4

BCD SUBTRACTION:-

The BCD subtraction is performed by subtracting the digits of each 4 – bit

group of the subtrahend from corresponding 4 – bit group of the minuend

in the binary starting from the LSD. If there is no borrow from the next

higher group[then no correction is required. If there is a borrow from the

next group, then 610 (0110) is subtracted from the difference term of this

group.

For example:-

Subtract 147.8 from 206.7 using 8421 BCD code.

Solution:-

2 0 6 . 7 0010 0000 0110 . 0111 (206.7 in BCD)

- 1 4 7 . 8 =>- 0001 0100 0111 . 1000 (147.8 in BCD)

5 8 . 9 0000 1011 1110 . 1111 (Borrows are present)

- 0110 -0110 .- 0110

0101 1000 . 1001

5 8 . 9 (corrected difference = 58.9)

PREPARED BY -BHABODEEPIKA MOHANTY

Result is (58.9)10

EXCESS THREE(XS-3) CODE:-

 The Excess-3 code, also called XS-3, is a non- weighted BCD code.

This derives it name from the fact that each binary code word is the

corresponding 8421 code word plus 0011(3). It is a sequential code. It

is a self complementing code.

XS-3 ADDITION:-

 In XS-3 addition, add the XS-3 numbers by adding the 4 bit groups in

each column starting from the LSD. If there is no carry out from the

addition of any of the 4 bit groups, subtract 0011 from the sum term

of those groups. If there is a carry out, add 0011 to the sum term of

those groups

For example:-

Add 37 and 28 using XS-3 code.

Solution:-

3 7 0110 1010 (37 in XS-3)

+ 2 8 => + 0101 1011 (28 in XS-3)

6 5 1011 11010 (Carry is generated)

 + 1 (Propagate carry)

 1100 0101 (Add 0110 to correct 0101 and

 - 0011 +0011 subtract 0011 to correct 1100)

 1001 1000 (Corrected sum in XS-3 = 6510)

PREPARED BY -BHABODEEPIKA MOHANTY

ASCII CODE:-

 The American Standard Code for Information Interchange (ASCII)

pronounced as ‘ASKEE’ is widely used alphanumeric code. This is

basically a 7 bit code. The number of different bit patterns that can be

created with 7 bits is 27 = 128 , the ASCII can be used to encode both

the uppercase and lowercase characters of the alphabet (52 symbols)

and some special symbols in addition to the 10 decimal digits. It is

used extensively for printers and terminals that interface with small

computer systems. The table shown below shows the ASCII group.

GRAY CODE:-

 The gray code is a non-weighted code. It is not a BCD code. It is cyclic

code because successive words in this differ in one bit position only

i.e it is a unit distance code.

 Gray code is used in instrumentation and data acquisition systems

where linear or angular displacement is measured. They are also

used in shaft encoders, I/O devices, A/D converters and other

peripheral equipment.

BINARY- TO – GRAY CONVERSION:-

If an n-bit binary number is represented by Bn Bn-1 - - - - - B1 and its gray

code equivalent by Gn Gn-1 G1,

where Bn and Gn are the MSBs , then gray code bits are obtained from the

binary code as follows Gn = Bn

Gn-1 = Bn Bn-1

.

.

.

PREPARED BY -BHABODEEPIKA MOHANTY

0

.

G1=B2 B1

Where the symbol stands for Exclusive OR (X-OR)

For example :-

Convert the binary 1001 to the Gray code.

Solution :-`

Binary → 1 0 1

Gray1 1 0 1

The gray code is 1101

GRAY- TO - BINARY CONVERSION:-

 If an n-bit gray number is represented by Gn Gn-1 -------- G1 and its

binary equivalent by Bn Bn-1 B1, then binary bits are obtained from

Gray bits as follows :

 Bn= Gn

Bn-1 = Bn G n-1

.

.

.

.

B1 = B2 G1

PREPARED BY -BHABODEEPIKA MOHANTY

For example :-

Convert the Gray code 1101 to the binary.

Solution :-

Gray → 1 1 0 1

Binary

1 0 0 1

The binary code is 1001

LOGIC GATES

LOGIC GATES:-

 Logic gates are the fundamental building blocks of digital systems.

There are 3 basic types of gates AND, OR and NOT.

 Logic gates are electronic circuits because they are made up of a

number of electronic devices and components.

 Inputs and outputs of logic gates can occur only in 2 levels. These

two levels are termed HIGH and LOW, or TRUE and FALSE, or ON

and OFF or simply 1 and 0.

 The table which lists all the possible combinations of input variables

and the corresponding outputs is called a truth table.

LEVEL LOGIC:-

 A logic in which the voltage levels represents logic 1 and logic 0.

Level logic may be positive or negative logic.

Positive Logic:-

PREPARED BY -BHABODEEPIKA MOHANTY

 A positive logic system is the one in which the higher of the two

voltage levels represents the logic 1 and the lower of the two voltages

level represents the logic 0.

Negative Logic:-

 A negative logic system is the one in which the lower of the two

voltage levels represents the logic 1 and the higher of the two

voltages level represents the logic 0.

DIFFERENT TYPES OF LOGIC GATES:- NOT GATE (INVERTER):-

 A NOT gate, also called and inverter, has only one input and one

output. It is a device whose output is always the complement of its

input.

 The output of a NOT gate is the logic 1 state when its input is in logic

0 state and the logic 0 state when its inputs is in logic 1 state.

IC No. :- 7404

Logic Symbol Truth table

Timing Diagram

1 0 0 1

A

A

0 1 1 0

INPUT A OUTPUT A

0 1

1 0

PREPARED BY -BHABODEEPIKA MOHANTY

AND GATE:-

 An AND gate has two or more inputs but only one output.

 The output is logic 1 state only when each one of its inputs is at logic

1 state. The output is logic 0 state even if one of its inputs is at logic 0

state.

IC No.:- 7408

Logic Symbol Truth Table

Timing Diagram

0 0 1 1

A

0 1 0 1

B

0 0 0 1

Q

OR GATE:-

 An OR gate may have two or more inputs but only one output.

 The output is logic 1 state, even if one of its input is in logic 1 state.

 The output is logic 0 state, only when each one of its inputs is in logic

state.

IC No.:- 7432

 OUTPUT

A B Q=A . B

0 0 0

0 1 0

1 0 0

1 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

Logic Symbol Truth Table

Timing Diagram

0 0 1 1

A

0 1 0 1

B

0 1 1 1

Q

NAND GATE:-

 NAND gate is a combination of an AND gate and a NOT gate.

 The output is logic 0 when each of the input is logic 1 and for any

other combination of inputs, the output is logic 1.

 IC No.:- 7400 two input NAND gate 7410 three input NAND gate

7420 four input NAND gate 7430 eight input NAND gate

INPUT OUTPUT

A B Q=A + B

0 0 0

0 1 1

1 0 1

1 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

Logic Symbol Truth Table

Timing Diagram

0 0 1 1

A

0 1 0 1

B

1 1 1 0

Q

NOR GATE:-

 NOR gate is a combination of an OR gate and a NOT gate.

 The output is logic 1, only when each one of its input is logic 0 and

for any other combination of inputs, the output is a logic 0 level.

INPUT OUTPUT

A B Q= A . B

0 0 1

0 1 1

1 0 1

1 1 0

PREPARED BY -BHABODEEPIKA MOHANTY

 IC No.:- 7402 two input NOR gate 7427 three input NOR gate 7425

four input NOR gate

Logic Symbol Truth Table

Timing Diagram

0 0 1 1

A

0 1 0 1

B

1 0 0 0

Q

EXCLUSIVE – OR (X-OR) GATE:-

 An X-OR gate is a two input, one output logic circuit.

INPUT OUTPUT

A B Q= A + B

0 0 1

0 1 0

1 0 0

1 1 0

PREPARED BY -BHABODEEPIKA MOHANTY

 The output is logic 1 when one and only one of its two inputs is logic

1. When both the inputs is logic 0 or when both the inputs is logic 1,

the output is logic 0.

IC No.:- 7486

Logic Symbol Truth Table

INPUTS are A and B

OUTPUT is Q = A B

= A B + A B

Timing Diagram

0 0 1 1

A

0 1 0 1

B

0 1 1 0

Q

INPUT OUTPUT

A B Q = A B

0 0 0

0 1 1

1 0 1

1 1 0

PREPARED BY -BHABODEEPIKA MOHANTY

EXCLUSIVE – NOR (X-NOR) GATE:-

 An X-NOR gate is the combination of an X-OR gate and a NOT gate.

 An X-NOR gate is a two input, one output logic circuit.

 The output is logic 1 only when both the inputs are logic 0 or when

both the inputs is 1. The output is logic 0 when one of the inputs is

logic 0 and other is 1.

IC No.:- 74266

Logic Symbol

OUT =A B + A B

= A XNOR B

Timing Diagram

A

0 1 0 1

B

OUT 1 0 0 1

INPUT OUTPUT

A B OUT =A

XNOR B

0 0 1

0 1 0

1 0 0

1 1 1

0 0 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

UNIVERSAL GATES:-

 There are 3 basic gates AND, OR and NOT, there are two universal

gates NAND and NOR, each of which can realize logic circuits single

handedly. The NAND and NOR gates are called universal building

blocks. Both NAND and NOR gates can perform all logic functions

i.e. AND, OR, NOT, EXOR and EXNOR.

NAND GATE:-

Inverter from NAND gate

Input = A

Output Q = A

AND gate from NAND gate

Input s are A and B

Output Q = A.B

OR gate from NAND gate

Inputs are A and B

Output Q = A+B

PREPARED BY -BHABODEEPIKA MOHANTY

NOR gate from NAND gate

Inputs are A and B

Output Q = A+B

EX-OR gate from NAND gate

Inputs are A and B

Output Q = A B + AB

EX-NOR gate From NAND gate

Inputs are A and B

Output Q = A B + A B

NOR GATE:-

Inverter from NOR gate

PREPARED BY -BHABODEEPIKA MOHANTY

Input = A

Output Q = A

AND gate from NOR gate Input s are A and B Output Q = A.B

OR gate from NOR gate

Inputs are A and B

Output Q = A+B

NAND gate from NOR gate

Inputs are A and B

Output Q = A.B

EX-OR gate from NOR gate

Inputs are A and B

PREPARED BY -BHABODEEPIKA MOHANTY

Output Q = A B + AB

EX-NOR gate From NOR gate

Inputs are A and B

Output Q = A B + A B

BOOLEAN ALGEBRA

INTRODUCTION:-

 Switching circuits are also called logic circuits, gates circuits and

digital circuits. Switching algebra is also called Boolean algebra.

 Boolean algebra is a system of mathematical logic. It is an algebraic

system consisting of the set of elements (0,1), two binary operators

called OR and AND and unary operator called NOT.

 It is the basic mathematical tool in the analysis and synthesis of

switching circuits. It is a way to express logic functions algebraically.

 Any complex logic can be expressed by a Boolean function.

 The Boolean algebra is governed by certain well developed rules and

laws.

PREPARED BY -BHABODEEPIKA MOHANTY

AXIOMS AND LAWS OF BOOLEAN ALGEBRA:-

 Axioms or postulates of Boolean algebra are set of logical expressions

that are accepted without proof and upon which we can build a set of

useful theorems. Actually, axioms are nothing more than the

definitions of the three basic logic operations AND, OR and

INVERTER. Each axiom can be interpreted as the outcome of an

operation performed by a logic gate.

AND operation OR operation NOT operation

Axiom 1: 0 . 0 = 0 Axiom 5: 0 + 0 = 0

Axiom 9: 1 = 0

Axiom 2: 0 . 1 = 0

Axiom 3: 1 . 0 = 0

Axiom 2: 1 . 1 = 1

Axiom 6: 0 + 1 = 1

Axiom 7: 1 + 0 = 1

Axiom 8: 1 + 1 = 1

Axiom 10:0 = 1

1. Complementation Laws:-

The term complement simply means to invert, i.e. to changes 0s to 1s and

1s to 0s. The five laws of complementation are as follows:

Law 1: 0 = 1

Law 2 : 1 = 0

Law 3: if A = 0, then A = 1

Law 4: if A = 1,thenA = 0

Law 5:A = 0 (double complementation law)

OR Laws:-

The four OR laws are as follows :-

PREPARED BY -BHABODEEPIKA MOHANTY

Law 1: A + 0 = 0(Null law)

Law 2: A + 1 = 1(Identity law)

Law 3: A + A = A

Law 4: A +A = 1

AND Laws:-

The four AND laws are as follows:-

Law 1: A . 0 = 0(Null law)

Law 2: A . 1 = 1(Identity law)

Law 3: A . A = A

Law 4: A .A = 0

Commutative Laws:-

 Commutative laws allow change in position of AND or OR variables.

There are two commutative laws.

Law 1: A + B = B + A

Proof

=

Law 2: A . B = B . A

Proof

=

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

B A B+ A

0 0 0

0 1 1

1 0 1

1 1 1

A B A . B

0 0 0

0 1 0

1 0 0

1 1 1

B A B. A

0 0 0

0 1 0

1 0 0

1 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

This law can be extended to any number of variables.

For example

A.B. C = B. C. A = C. A. B = B. A. C

Associative Laws:-

 The associative laws allow grouping of variables. There are 2

associative laws.

Law 1: (A + B) + C = A + (B + C)

Proof

=

Law 2: (A .B) C = A (B .C)

Proof

=

A B C B+C A+(B+C)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C A+B (A+B)+C

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 =1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C AB (AB)C

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

A B C B.C A(B.C)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

 This law can be extended to any number of variables. For example

A(BCD) = (ABC)D = (AB) (CD)

Distributive Laws:-

 The distributive laws allow factoring or multiplying out of

expressions. There are two distributive laws.

Law 1: A (B + C) = AB + AC

Proof

=

Law 2: A + BC = (A+B) (A+C)

ProofRHS = (A+B) (A+C)

= AA + AC + BA + BC

= A + AC + AB + BC

= A (1+ C + B) + BC

= A. 1 + BC (1 +C + B = 1 + B = 1)

= A + BC

= LHS

A B C B+C A(B+C)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A B C AB AC A+(B+C)

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

Redundant Literal Rule (RLR):-

Law 1: A + AB = A + B

Proof

A + AB = (A + A) (A + B)

= 1. (A + B)

= A +B

Law 2: A(A + B) = AB A(A + B) = AA + AB

= 0 + AB

= AB

8. Idempotence Laws:- Idempotence means same value.

Law 1: A. A = A

Proof

If A = 0, then A. A = 0. 0 =0 = A If A = 1, then A. A = 1. 1 = 1 = A

This law states that AND of a variable with itself is equal to that variable

only.

Law 2: A + A = A

Proof

If A = 0, then A + A = 0 + 0 = 0 = A If A = 1, then A + A = 1 + 1 = 1 = A

This law states that OR of a variable with itself is equal to that variable

only.

9. Absorption Laws:- There are two laws:

Law 1: A + A ∙ B = A

Proof

Proof

A + A ∙ B = A (1 + B) = A ∙ 1 = A

A B AB A+AB

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

Law 2: A (A + B) = A

Proof A (A + B) = A ∙ A + A ∙ B = A + AB = A(1 + B) =

A ∙ 1 = A

10. Consensus Theorem (Included Factor

Theorem):-

Theorem 1:

AB +AC + BC = AB +AC

Proof

Theorem 2:

LHS = AB + AC + BC

= AB + AC + BC (A+A)

= AB + AC + BCA + BCA

= AB (1 + C) + AC (1+ B)

=AB (1) +AC (1)

= AB + AC

= RHS

Proof

(A + B)(A + C)(B + C) =(A +B)(A + C)

LHS = (A + B) (A + C) (B + C)

= (AA + AC + BA + BC) (B + C)

= (AC + BC +AB) (B + C)

= ABC + BC + AB + AC + BC+ABC

= AC + BC +AB

RHS= (A + B) (A+C)

= AA + AC + BC +AB

= AC + BC +AB

= LHS

11. Transposition Theorem:- Theorem:

AB + AC = (A + C)(A + B)

Proof

RHS= (A + C) (A + B)

= AA + CA + AB + CB

A B A+B A(A+B)

0 0 0 0

0 1 1 0

1 0 1 1

1 1 1 1

PREPARED BY -BHABODEEPIKA MOHANTY

= 0 +AC + AB + BC

= AC + AB + BC (A+A)

= AB + ABC + AC +ABC

= AB + AC

= LHS

De Morgan’s Theorem:-

De Morgan’s theorem represents two laws in Boolean algebra.

Law 1: A + B =A∙ B

Proof

=

This law states that the complement of a sum of variables is equal to the

product of their individual complements.

Law 2: A∙ B = A + B

Proof

A B A B A + B

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

A B A . B A . B

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

A B A + B

A + B

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

A B A B A B

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

PREPARED BY -BHABODEEPIKA MOHANTY

This law states that the complement of a product of variables is equal to the

sum of their individual complements.

DUALITY:-

The implication of the duality concept is that once a theorem or statement

is proved, the dual also thus stand proved. This is called the principle of

duality.

[f (A, B, C,…..,0, 1, +, ∙)]d = f(A, B, C, …., 1, 0, ∙, +)

Relations between complement and dual

fc (A, B, C, …..) = f (A, B, C, …..) = fd (A, B, C,…)

fd (A, B, C, …..) = f (A, B, C,…) = fc (A, B, C, …..)

The first relation states that the complement of a function f(A, B, C, …) can

be obtained by complementing all the variables in the dual function fd (A,

B, C, …..).

The second relation states that the dual can be obtained by complementing

all the literals in f (A, B, C, ….).

PREPARED BY -BHABODEEPIKA MOHANTY

SUM - OF - PRODUCTS FORM:-

 This is also called disjunctive Canonical Form (DCF) or Expanded

Sum of Products Form or Canonical Sum of Products Form.

 In this form, the function is the sum of a number of products terms

where each product term contains all variables of the function either

in complemented or uncomplemented form.

 This can also be derived from the truth table by finding the sum of all

the terms that corresponds to those combinations for which ‘f ’

assumes the value 1.

For example

f(A, B, C) = AB + BC

= AB (C + C) + BC (A + A)

= A BC + ABC + ABC + ABC

 The product term which contains all the variables of the functions

either in complemented or uncomplemented form is called a

minterm.

 The minterm is denoted as mo, m1, m2 … .

 An ‘n’ variable function can have 2n minterms.

 Another way of representing the function in canonical SOP form is

the showing the sum of minterms for which the function equals to 1.

For example

f (A, B, C) = m1 + m2+ m3 + m5

or

f (A, B, C) =∑ m (1, 2, 3, 5)

where ∑m represents the sum of all the minterms whose decimal codes are

given the parenthesis.

PREPARED BY -BHABODEEPIKA MOHANTY

PRODUCT- OF - SUMS FORM:-

 This form is also called as Conjunctive Canonical Form (CCF) or

Expanded Product - of – Sums Form or Canonical Product Of Sums

Form.

 This is by considering the combinations for which f = 0 Each term is a

sum of all the variables.

The function f (A, B, C) = (A + B + C∙C) + (A + B + C∙C)

= (A + B + C) (A + B + C) (A + B + C) (A + B + C)

 The sum term which contains each of the ‘n’ variables in either

complemented or uncomplemented form is called a maxterm.

 Maxterm is represented as M0, M1, M2, …….

Thus CCF of ‘f’ may be written as

f(A, B, C)= M0 ∙ M4 ∙ M6∙ M7

or

f(A, B, C) = (0, 4, 6, 7)

Where represented the product of all maxterms.

CONVERSION BETWEEN CANONICAL FORM:-

The complement of a function expressed as the sum of minterms equals the

sum of minterms missing from the original function.

Example:-

f(A, B, C) = ∑m(0,2,4,6,7)

This has a complement that can be expressed as

f (A, B, C) =∑ m(1, 3, 5) = m1 + m3 + m5

If we complement f by De- Morgan’s theorem we obtain ‘f’ in a form. f

=(m1+ m3 + m5) = m1. m3. m5

PREPARED BY -BHABODEEPIKA MOHANTY

= M1 M3 M5 =∏ M(1, 3 ,5)

Example:-

Expand A (A + B) (A + B + C) to maxterms and minterms.

Solution:-

In POS form

A(A + B) (A + B + C)

A = A + B B + CC

= (A + B) (A +B) + C∙C

= (A + B + CC) (A + B + C C)

= (A + B + C) (A + B +C) (A + B + C) (A + B + C) A + B = A + B + C∙C

= (A + B + C) (A + B + C)

Therefore

A(A + B)(A + B + C)

= (A + B + C) (A + B +C) (A + B + C) (A +B +C) (A + B + C) (A + B + C)

= (000) (001) (010) (011) (100) (101)

= M0 ∙ M1 ∙ M2 ∙ M3 ∙ M4 ∙ M5

=∏ M(0, 1, 2, 3, 4,5)

The maxterms M6 and M7 are missing in the POS form. So, the SOP form

will contain the minterms 6 and 7

KARNAUGH MAP OR K- MAP:-

 The K- map is a chart or a graph, composed of an arrangement of

adjacent cells, each representing a particular combination of variables

in sum or product form.

 The K- map is systematic method of simplifying the Boolean

expression.

PREPARED BY -BHABODEEPIKA MOHANTY

TWO VARIABLE K- MAP:-

 A two variable expression can have 22 = 4 possible combinations of

the input variables A and B.

Mapping of SOP Expression:-

 The 2 variable K-map has 22 = 4 squares. These squares are called

cells.

 A ‘1’ is placed in any square indicates that corresponding minterm is

included in the output expression, and a 0 or no entry in any square

indicates that the corresponding minterm does not appear in the

expression for output.

Example:-

Map expression f= AB + AB Solution:-

The expression minterms is F = m1 + m2 = m(1, 2)

B 0 1

0

A 1

0 1

0 1

2 3

1 0

PREPARED BY -BHABODEEPIKA MOHANTY

Minimization of SOP Expression:-

To minimize a Boolean expression given in the SOP form by using K- map,

the adjacent squares having 1s, that is minterms adjacent to each other are

combined to form larger squares to eliminate some variables.

The possible minterm grouping in a two variable K- map are shown below

 Two minterms, which are adjacent to each other, can be combined to

form a bigger square called 2 – square or a pair. This eliminates one

variable that is not common to both the minterms.

 Two 2-squares adjacent to each other can be combined to form a 4-

square. A 4- square eliminates 2 variables. A 4-square is called a

quad.

 Consider only those variables which remain constant throughout the

square, and ignore the variables which are varying. The non-

complemented variable is the variable remaining constant as 1.The

complemented variable is the variable remaining constant as a 0 and

the variables are written as a product term.

PREPARED BY -BHABODEEPIKA MOHANTY

 Example:-

Reduce the expression f= AB + A B + AB using mapping.

Solution:-

Expressed in terms of minterms, the given expression is f = m0 + m1 + m3 =

∑m (0, 1, 3)

F = A + B

Mapping of POS Expression:-

Each sum term in the standard POS expression is called a Maxterm. A

function in two variables (A,B) has 4 possible maxterms, A + B, A + B, A + B

and A + B . They are represented as M0, M1, M2 and M3 respectively.

The maxterm of a two variable K-map Example:-

Plot the expression f= (A + B)(A + B)(A + B) Solution:-

PREPARED BY -BHABODEEPIKA MOHANTY

Expression interms of maxterms is f = πM (0, 2, 3)

Minimization of POS Expressions:-

 In POS form the adjacent 0s are combined into large square as

possible. If the squares having complemented variable then the value

remain constant as a 1 and the non-complemented variable if its

value remains constant as a 0 along the entire square and then their

sum term is written.

The possible maxterms grouping in a two variable K-map are shown below

Example:-

Reduce the expression f = (A + B)(A + B)(A +B) using mapping Solution:-

PREPARED BY -BHABODEEPIKA MOHANTY

The given expression in terms of maxterms is f = πM (0, 1, 3)

THREE VARIABLE K- MAP:-

A function in three variables (A, B, C) can be expressed in SOP and POS

form having eight possible combination. A three variable K-map have 8

square or cell and on the map represents each square minterm or maxterm

is shown in figure below.

Example:-

Map the expression f = ABC+ABC + ABC + ABC +ABC Solution:-

So in the SOP form the expression is f = ∑ m (1, 5, 2, 6, 7)

PREPARED BY -BHABODEEPIKA MOHANTY

Example:-

Map the expression f = (A + B + C) (A + B+C) (A + B + C) (A + B + C) (A + B +

C) Solution:-

So in the POS form the expression is f = π M (0, 5, 7, 3, 6)

Minimization of SOP and POS Expressions:-

For reducing the Boolean expressions in SOP (POS) form the following

steps are given below

 Draw the K-

map and place

expression.

1s (0s) corresponding to the minterms (maxterms) of

the SOP (POS)

 In the map 1s (0s) which are not adjacent to any other 1(0) are the

isolated minterms (maxterms). They are to be read as they are

because they cannot be combined even into a 2-square.

 For those 1s (0s) which are adjacent to only one other 1(0) make them

pairs (2 squares).

 For quads (4- squares) and octet (8 squares) of adjacent 1s (0s) even if

they contain some 1s (0s) which have already been combined. They

must geometrically form a square or a rectangle.

PREPARED BY -BHABODEEPIKA MOHANTY

For any 1s (0s) that have not been combined yet then combine them into

bigger squares if possible. Form the minimal expression by summing

(multiplying) the product (sum) terms of all the groups.

Some of the possible combinations of minterms in SOP form

These possible combinations are also for POS but 1s are replaced by 0s.

FOUR VARIABLE K-MAP:-

A four variable (A, B, C, D) expression can have 24 = 16 possible

combinations of input variables. A four variable K-map has 24 = 16 squares

or cells and each square on the map represents either a minterm or a

maxterm as shown in the figure below. The binary number designations of

the rows and columns are in the gray code. The binary numbers along the

top of the map indicate the conditions of C and D along any column and

binary numbers along left side indicate the conditions of A and B along any

row. The numbers in the top right corners of the squares indicate the

minterm or maxterm desginations.

PREPARED BY -BHABODEEPIKA MOHANTY

SOP FORM

Minimization of SOP and POS Expressions:-

 For reducing the Boolean expressions in SOP (POS) form the

following steps are given below

 Draw the K-map and place 1s (0s) corresponding to the minterms

(maxterms) of the SOP (POS) expression.

 In the map 1s (0s) which are not adjacent to any other 1(0) are the

isolated minterms (maxterms). They are to be read as they are

because they cannot be combined even into a 2-square.

POS FORM

PREPARED BY -BHABODEEPIKA MOHANTY

 For those 1s (0s) which are adjacent to only one other 1(0) make them

pairs (2 squares). For quads (4- squares) and octet (8 squares) of

adjacent 1s (0s) even if they contain some 1s (0s) which have already

been combined. They must geometrically form a square or a

rectangle.

 For any 1s (0s) that have not been combined yet then combine them

into bigger squares if possible. Form the minimal expression by

summing (multiplying) the product (sum) terms of all the groups.

Example:-

Reduce using mapping the expression f = ∑ m (0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13)

Solution:-

The given expression in POS form is f = π M (4, 6, 11, 14, 15) and in SOP

form f = ∑ m (0, 1, 2, 3, 5, 7, 8, 9,

10, 12, 13

PREPARED BY -BHABODEEPIKA MOHANTY

The minimal SOP expression is fmin= BD + AC + AD

The minimal POS expression is fmin =(A +B + D) (A + C + D) (A + B + C)

DON’T CARE COMBINATIONS:-

 The combinations for which the values of the expression are not

specified are called don’t care combinations or optional combinations

and such expression stand incompletely specified. The output is a

don’t care for these invalid combinations. The don’t care terms are

denoted by d or X. During the process of designing using SOP maps,

each don’t care is treated as 1 to reduce the map otherwise it is

treated as 0 and left alone. During the process of designing using POS

maps, each don’t care is treated as 0 to reduce the map otherwise it is

treated as 1 and left alone.

 A standard SOP expression with don’t cares can be converted into

standard POS form by keeping the don’t cares as they are, and the

missing minterms of the SOP form are written as the maxterms of the

POS form. Similarly, to convert a standard POS expression with don’t

cares can be converted into standard SOP form by keeping the don’t

cares as they are, and the missing maxterms of the POS form are

written as the minterms of the SOP form.

Example:-

Reduce the expression f = ∑ m(1, 5, 6, 12, 13, 14) + d(2, 4) using K- map.

Solution:-

The given expression in SOP form is f = ∑ m (1, 5, 6, 12, 13, 14) + d(2, 4)

PREPARED BY -BHABODEEPIKA MOHANTY

The given expression in POS form is f = π M (0, 3, 7, 8, 9, 10, 11,15) + d(2, 4)

The minimal of SOP expression is fmin = BC + BD +ACD

The minimal of POS expression is fmin = (B + D)(A + B) (C + D

PREPARED BY -BHABODEEPIKA MOHANTY

Unit-2: Combinational logic circuits
 A combinational circuit consists of logic gates whose outputs at any

time are determined from only the present combination of inputs.

 A combinational circuit performs an operation that can be specified

logically by a set of Boolean functions.

 It consists of an interconnection of logic gates. Combinational logic

gates react to the values of the signals at their inputs and produce the

value of the output signal, transforming binary information from the

given input data to a required output data.

 A block diagram of a combinational circuit is shown in the below

figure.

 The n input binary variables come from an external source; the m

output variables are produced by the internal combinational logic

circuit and go to an external destination.

 Each input and output variable exists physically as an analog signal

whose values are interpreted to be a binary signal that represents

logic 1and logic 0.

 BINARY ADDER SUBTRACTOR:-

 Digital computers perform a variety of information-processing

tasks. Among the functions encountered are the various

arithmetic operations.

 The most basic arithmetic operation is the addition of two

binary digits. This simple addition consists of four possible

PREPARED BY -BHABODEEPIKA MOHANTY

elementary operations: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 =

10.

 The first three operations produce a sum of one digit, but when

both augend and addend bits are equal to 1; the binary sum

consists of two digits. The higher significant bit of this result is

called a carry.

 When the augend and addend numbers contain more

significant digits, the carry obtained from the addition of two

bits is added to the next higher order pair of significant bits.

 A combinational circuit that performs the addition of two bits is

called a half adder.

 One that performs the addition of three bits (two significant bits

and a previous carry) is a full adder. The names of the circuits

stem from the fact that two half adders can be employed to

implement a full adder.

 HALF ADDER:-
 This circuit needs two binary inputs and two binary outputs.

 The input variables designate the augend and addend bits; the

output variables produce the sum and carry. Symbols x and y

are assigned to the two inputs and S (for sum) and C (for carry)

to the outputs.

 The truth table for the half adder is listed in the below table.

 The C output is 1 only when both inputs are 1. The S output

represents the least significant bit of the sum.

PREPARED BY -BHABODEEPIKA MOHANTY

 The simplified Boolean functions for the two outputs can be

obtained directly from the truth table.

 The simplified sum-of-products expressions are

S = x’y + xy’

C = xy

 The logic diagram of the half adder implemented in sum of

products is shown in the below figure. It can be also

implemented with an exclusive-OR and an AND gate.

 The logic diagram of the half adder implemented in sum of

products is shown in the below figure. It can be also

implemented with an exclusive-OR and an AND gate.

PREPARED BY -BHABODEEPIKA MOHANTY

FULL ADDER:-

 A full adder is a combinational circuit that forms the arithmetic

sum of three bits.

 It consists of three inputs and two outputs. Two of the input

variables, denoted by x and y , represent the two significant bits

to be added. The third input, z , represents the carry from the

previous lower significant position.

Two outputs are necessary because the arithmetic sum of three

binary digits ranges in value from 0 to 3, and binary

representation of 2 or 3 needs two bits. The two outputs are

designated by the symbols S for sum and C for carry.

PREPARED BY -BHABODEEPIKA MOHANTY

 The binary variable S gives the value of the least significant bit

of the sum. The binary variable C gives the output carry formed

by adding the input carry and the bits of the words.

 The eight rows under the input variables designate all possible

combinations of the three variables. The output variables are

determined from the arithmetic sum of the input bits. When all

input bits are 0, the output is 0.

 The S output is equal to 1 when only one input is equal to 1 or

when all three inputs are equal to 1. The C output has a carry of

1 if two or three inputs are equal to 1.

 The simplified expressions are

S = x’y’z + x’yz’ + xy’z’ + xyz

HALF

C = xy + xz + y

 The logic diagram for the full adder implemented in sum-of-

products form is shown in figure.

 It can also be implemented with two half adders and one OR

gate as shown in the figure.

SUBTRACTOR:-

 This circuit

needs two

PREPARED BY -BHABODEEPIKA MOHANTY

binary inputs and two binary outputs.

 Symbols x and y are assigned to the two inputs and D (for

difference) and B (for borrow) to the outputs.

 The truth table for the half subtractor is listed in the below table.

 The B output is 1 only when the

inputs are 0 and 1. The D output
represents the least significant bit of the subtraction.

 The subtraction operation is done by using the following rules

as

 0-0=0;

 0-1=1 with borrow 1;

 1-0=1;

 1-1=0.

 The simplified Boolean functions for the two outputs can be

obtained directly from the truth table. The simplified sum-of-

products expressions are

D = x’y + xy’ and B =x’y

PREPARED BY -BHABODEEPIKA MOHANTY

 The logic diagram of the half adder implemented in sum of

products is shown in the figure. It can be also implemented with

an exclusive-OR and an AND gate with one inverted input.

FULL SUBTRACTOR:-

 A full subtractor is a combinational circuit that forms the

arithmetic subtraction operation of three bits.

 It consists of three inputs and two outputs. Two of the input

variables, denoted by A and B , represent the two significant bits

to be subtracted. The third input, Bin , is subtracted from the

result 0f the first subtraction.

PREPARED BY -BHABODEEPIKA MOHANTY

 Two outputs are necessary because the arithmetic subtraction of three

binary digits ranges in value from 0 to 3, and binary representation of

2 or 3 needs two bits. The two outputs are designated by the symbols

D for difference and B for borrow.

 The binary variable D gives the value of the least significant bit of the

difference. The binary variable B gives the output borrow formed

during the subtraction process.

 The eight rows under the input variables designate all possible

combinations of the three variables. The output variables are

determined from the arithmetic subtraction of the input bits.

 The difference D becomes 1 when any one of the input is 1or all three

inputs are equal to1 and the borrow B is 1 when the input

combination is (0 0 1) or (0 1 0) or (0 1 1) or (1 1 1).

The simplified expressions are

D = A’B’Bin + A’BBin’ + AB’ Bin’ + ABBin

PREPARED BY -BHABODEEPIKA MOHANTY

B = A’Bin + A’B + BBin

 The logic diagram for the full adder implemented in sum-of-

products form is shown in figure.

BINARY ADDER:-

 A binary adder is a digital circuit that produces the arithmetic sum

of two binary numbers.

 It can be constructed with full adders connected in cascade, with the

output carry from each full adder connected to the input carry of the

next full adder in the chain.

 Addition of n-bit numbers requires a chain of n full adders or a chain

of one-half adder and n-1 full adders. In the former case, the input

carry to the least significant position is fixed at 0.

 The interconnection of four full-adder (FA) circuits to provide a four-

bit binary ripple carry adder is shown in the figure.

 The augend bits of A and the addend bits of B are designated by

subscript numbers from right to left, with subscript 0 denoting the

least significant bit.

PREPARED BY -BHABODEEPIKA MOHANTY

 The carries are connected in a chain through the full adders. The

input carry to the adder is C0, and it ripples through the full adders

to the output carry C4. The S outputs generate the required sum bits.

 An n -bit adder requires n full adders, with each output carry

connected to the input carry of the next higher order full adder.

 Consider the two binary numbers A = 1011 and B = 0011. Their sum S

= 1110 is formed with the four bit adder as follows:

 The bits are added with full adders, starting from the least

significant position (subscript 0), to form the sum bit and carry bit.

The input carry C0 in the least significant position must be 0.

 The value of Ci+1 in a given significant position is the output carry

of the full adder. This value is transferred into the input carry of the

full adder that adds the bits one higher significant position to the

left.

 The sum bits are thus generated starting from the rightmost position

and are available as soon as the corresponding previous carry bit is

generated. All the carries must be generated for the correct sum bits

to appear at the outputs.

PREPARED BY -BHABODEEPIKA MOHANTY

MULTIPLEXER:-

 A multiplexer is a combinational circuit that selects binary

information from one of many input lines and directs it to a single

output line.

 The selection of a particular input line is controlled by a set of

selection lines.

 Normally, there are 2n input lines and n selection lines whose bit

combinations determine which input is selected.

 A four-to-one-line multiplexer is shown in the below figure. Each of

the four inputs, I0 through I3, is applied to one input of an AND gate.

 Selection lines S1 and S0 are decoded to select a particular AND gate.

The outputs of the AND gates are applied to a single OR gate that

provides the one-line output.

 The function table lists the input that is passed to the output for each

combination of the binary selection values.

 To demonstrate the operation of the circuit, consider the case when

S1S0= 10.

 The AND gate associated with input I2 has two of its inputs equal to

1 and the third input connected to I2.

 The other three AND gates have at least one input equal to 0, which

makes their outputs equal to 0.

 The output of the OR gate is now equal to the value of I2, providing a

path from the selected input to the output.

PREPARED BY -BHABODEEPIKA MOHANTY

 A multiplexer is also called a data selector, since it selects one of

many inputs and steers the binary information to the output line.

DEMULTIPLEXER:-
 The data distributor, known more commonly as a Demultiplexer or

“Demux” for short, is the exact opposite of the Multiplexer.

PREPARED BY -BHABODEEPIKA MOHANTY

 The demultiplexer takes one single input data line and then switches

it to any one of a number of individual output lines one at a time. The

demultiplexer converts a serial data signal at the input to a parallel

data at its output lines as shown below.

 The Boolean expression for this 1-to-4 demultiplexer above with

outputs A to D and data select lines a, b is given as:

 F = (ab)’A + a’bB + ab’C + abD

 The function of the demultiplexer is to switch one common data

input line to any one of the 4 output data lines A to D in our example

above. As with the multiplexer the individual solid state switches are

selected by the binary input address code on the output select pins

“a” and “b” as shown.

PREPARED BY -BHABODEEPIKA MOHANTY

 Unlike multiplexers which convert data from a single data line to

multiple lines and demultiplexers which convert multiple lines to a

single data line, there are devices available which convert data to and

from multiple lines and in the next tutorial about combinational logic

devices.

 Standard demultiplexer IC packages available are the TTL 74LS138 1

to 8-output demultiplexer, the TTL 74LS139 Dual 1-to-4 output

demultiplexer or the CMOS CD4514 1-to-16 output demultiplexer.

ENCODER:-

 An encoder is a digital circuit that performs the inverse operation of a

decoder.

 An encoder has 2n (or fewer) input lines and n output lines.

 The output lines, as an aggregate, generate the binary code

corresponding to the input value.

PREPARED BY -BHABODEEPIKA MOHANTY

 The above Encoder has eight inputs (one for each of the octal digits)

and three outputs that generate the corresponding binary number.

 It is assumed that only one input has a value of 1 at any given time.

 The encoder can be implemented with OR gates whose inputs are

determined directly from the truth table.

 Output z is equal to 1 when the input octal digit is 1, 3, 5, or 7.

 Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4,

5, 6, or 7.

 These conditions can be expressed by the following Boolean output

functions:

 z = D1 + D3 + D5 + D7

 y = D2 + D3 + D6 + D7

 x = D4 + D5 + D6 + D7

 The encoder can be implemented with three OR gates.

 The encoder defined above has the limitation that only one input can

be active at any given time.

 If two inputs are active simultaneously, the output produces an

undefined combination.

DECODER:-

PREPARED BY -BHABODEEPIKA MOHANTY

 A decoder is a combinational circuit that converts binary information

from n input lines to a maximum of 2n unique output lines.

 If the n -bit coded information has unused combinations, the decoder

may have fewer than 2n outputs.

 The decoders presented here are called n -to- m -line decoders, where

m … 2n.

 Their purpose is to generate the 2n (or fewer) minterms of n input

variables.

 Each combination of inputs will assert a unique output. The name

decoder is also used in conjunction with other code converters, such

as a BCD-to-seven-segment decoder.

 Consider the three-to-eight-line decoder circuit of three inputs are

decoded into eight outputs, each representing one of the minterms of

the three input variables.

 The three inverters provide the complement of the inputs, and each

one of the eight AND gates generates one of the minterms.

 The input variables represent a binary number, and the outputs

represent the eight digits of a number in the octal number system.

 However, a three-to-eight-line decoder can be used for decoding any

three-bit code to provide eight outputs, one for each element of the

code.

 A two-to-four-line decoder with an enable input constructed with

NAND gates is shown in Fig.

 The circuit operates with complemented outputs and a complement

enable input. The decoder is enabled when E is equal to 0 (i.e., active-

low enable). As indicated by the truth table, only one output can be

equal to 0 at any given time; all other outputs are equal to 1.

 The output whose value is equal to 0 represents the minterm selected

by inputs A and B.

 The circuit is disabled when E is equal to 1, regardless of the values

of the other two inputs.

 When the circuit is disabled, none of the outputs are equal to 0 and

none of the minterms are selected.

PREPARED BY -BHABODEEPIKA MOHANTY

 In general, a decoder may operate with complemented or un-

complemented outputs.

 The enable input may be activated with a 0 or with a 1 signal.

 Some decoders have two or more enable inputs that must satisfy a

given logic condition in order to enable the circuit.

 A decoder with enable input can function as a demultiplexer— a

circuit that receives information from a single line and directs it to

one of 2n possible output lines.

 The selection of a specific output is controlled by the bit combination

of n selection lines.

 The decoder of Fig. can function as a one-to-four-line demultiplexer

when E is taken as a data input line and A and B are taken as the

selection inputs.

 The single input variable E has a path to all four outputs, but the

input information is directed to only one of the output lines, as

specified by the binary combination of the two selection lines A and B

.

 This feature can be verified from the truth table of the circuit.

 For example, if the selection lines AB = 10, output D2 will be the same

as the input value E, while all other outputs are maintained at 1.

 Since decoder and demultiplexer operations are obtained from the

same circuit, a decoder with an enable input is referred to as a

decoder – demultiplexer.

 A application of this decoder is binary-to-octal conversion.

3- bit Magnitude Comparator:-

A comparator that compares two binary numbers

(each number having 3 bits) and produces three

outputs based on the relative magnitudes of given

binary bits is called a 3-bit magnitude comparator.

PREPARED BY -BHABODEEPIKA MOHANTY

The equal functions are A0 = B0, A1= B1, A2 = B2

Then A=B = (A0’B0’ + A0B0)(A1’B1’ + A1B1)(A2’B2’ + A2B2)

The output is A< B in the cases of

A2<B2

A2 = B2 then A1<B1

A2 = B2, A1 = B1 then A0<B0

A<B = A2’B2 + [(A2’B2’ + A2B2) * A1’B1] + [(A2’B2’ + A2B2) *[(A1’B’ + A1B1) *

A0’B0]

The output is A> B in the cases of

A2 = B2 then A1>B

A2>B2

A2 = B2, A1 = B1 then A0>B0

A>B = A2B2’ + + [(A2’B2’ + A2B2) * A1B1’] + + [(A2’B2’ + A2B2) * [(A1’B’ + A1B1)

* A0B0’]

3-bit-logic-diagram

PREPARED BY -BHABODEEPIKA MOHANTY

Applications Comparator

Digital comparator and magnitude comparator is used in different

applications where data comparison is mostly required in many of the

activities, and these hold many benefits too.

 Now, look into few of the applications of comparators

 Used for authorization purposes (such as password management)

and biometric applications.

 These are implemented in process controllers and also in servo

motor controls.

 Implemented for the data comparison of variables like temperature, the

pressure is compared with that of reference values.

 Used to address decoding circuitry in computers.

Design of BCD to 7 Segment Display Decoder Circuit
The designing of BCD to seven segment display decoder circuit mainly

involves four steps namely analysis, truth table design, K-map and

designing a combinational logic circuit using logic gates.

The first step of this circuit design is an analysis of the common cathode

seven segment display. This display can be constructed with seven LEDs

in the form of H. A truth table of this circuit can be designed by the

inputs combinations for every decimal digit. For instance, decimal

number ‘1’ would control a blend of b & c.

The second step is the truth table design by listing the display input

signals-7, equivalent four-digit binary numbers as well as decimal

number.

The designing of the truth table for the decoder mainly depends on the

kind of display. Already we have discussed above that is, for a common

cathode display, the decoder output must be high in order to blink the

segment.

PREPARED BY -BHABODEEPIKA MOHANTY

The tabular form of a BCD to 7-segment decoder with a common

cathode display is shown below. The truth table consists of seven o/p

columns equivalent to each of the seven segments. For example, the

column for a-segment illustrates the various arrangements for which it is

to be light up. Thus ‘a’- segment is energetic for the digits like 0, 2, 3, 5, 6,

7, 8 & 9.

Digit X Y Z W a b c d e f g

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 1 1 1 1

2 0 0 1 0 0 0 1 0 0 1 0

3 0 0 1 1 0 0 0 0 1 1 0

4 0 1 0 0 1 0 0 1 1 0 0

5 0 1 0 1 0 1 0 0 1 0 0

6 0 1 1 0 0 1 0 0 0 0 0

7 0 1 1 1 0 0 0 1 1 1 1

8 1 0 0 0 0 0 0 0 0 0 0

9 1 0 0 1 0 0 0 0 1 0 0

By using the above truth table, for every output function, the Boolean

expression can be written.

a = F1 (X, Y, Z, W) = ∑m (0, 2, 3, 5, 7, 8, 9)

PREPARED BY -BHABODEEPIKA MOHANTY

b = F2 (X, Y, Z, W) = ∑m (0, 1, 2, 3, 4, 7, 8, 9)

c = F3 (X, Y, Z, W) = ∑m (0, 1, 3, 4, 5, 6, 7, 8, 9)

d = F4 (X, Y, Z, W) = ∑m (0, 2, 3, 5, 6, 8)

PREPARED BY -BHABODEEPIKA MOHANTY

e = F5 (X, Y, Z, W) = ∑m (0, 2, 6, 8)

f = F6 (X, Y, Z, W) = ∑m (0, 4, 5, 6, 8, 9)

g = F7 (X, Y, Z, W) = ∑m (2, 3, 4, 5, 6, 8, 9)

PREPARED BY -BHABODEEPIKA MOHANTY

The third step in this design mainly involves designing the K-map

(Karnaugh’s map) for every output expression as well as then shortening

them to get inputs logic combination for every output.

Simplification of Karnaugh -Map

The simplification of k-map of the common cathode 7 segment decoder

can be done in order to plan the combinational circuit. From the above K-

map simplification, we can get the output equations like these

a = X+Z+YW+Y’W’

b = Y’+Z’W’+ZW

c= Y+Z’+W

d = Y’W’+ZW’+YZ’W+Y’Z+X

e= Y’W’+ZW’

f= X + Z’W’+YZ’+YW’

g = X+YZ’+Y’Z+ZW’

The final step of this is a designing of a logic circuit using the above k-map

equations. A combinational circuit can be built by using 4-inputs namely

A, B, C, D and outputs on display like a, b, c, d, e, f, g. The operation of

the above logic circuit can be understood with the help of truth table only.

Once all the i/ps are connected to small logic.

BCD to Seven Segment Decoder Circuit

BCD to Seven Segment Decoder Circuit

Then the combinational logic circuit’s output will drive each and every

one of output LEDs apart from ‘g’ to transmission. Therefore the number

PREPARED BY -BHABODEEPIKA MOHANTY

‘0’ will be exhibited. Similarly, for all another grouping of the input

switches, the same process would take place.

PREPARED BY -BHABODEEPIKA MOHANTY

Input
SEQUENTIAL

LOGIC CIRCUIT

MEMORY

Unit-3: Sequential logic Circuits
SEQUENTIAL CIRCUIT:-

It is a circuit whose output depends upon the present input,

previous output and the sequence in which the inputs are applied.

HOW THE SEQUENTIAL CIRCUIT IS DIFFERENT FROM

COMBINATIONAL CIRCUIT? :-

In combinational circuit output depends upon present input at any

instant of time and do not use memory. Hence previous input does

not have any effect on the circuit. But sequential circuit has

memory and depends upon present input and previous output.

Sequential circuits are slower than combinational circuits and

these sequential circuits are harder to design.

Output

Clock

[Block diagram of Sequential Logic Circuit]

 The data stored by the memory element at any given instant of

time is called the present state of sequential circuit.

PREPARED BY -BHABODEEPIKA MOHANTY

TYPES:-

Sequential logic circuits (SLC) are classified as

i. Synchronous SLC

ii. Asynchronous SLC

 The SLC that are controlled by clock are called synchronous SLC

and those which are not controlled by a clock are asynchronous

SLC.

 Clock:- A recurring pulse is called a clock.

 FLIP-FLOP AND LATCH:-

o A flip-flop or latch is a circuit that has two stable states and can

be used to store information.

o A flip-flop is a binary storage device capable of storing one bit

of information. In a stable state, the output of a flip-flop is

either 0 or 1.

o Latch is a non-clocked flip-flop and it is the building block for

the flip-flop.

o A storage element in digital circuit can maintain a binary state

indefinitely until directed by an input signal to switch state.

o Storage element that operate with signal level are called

latches and those operate with clock transition are called as

flip-flops.

o The circuit can be made to change state by signals applied to

one or more control inputs and will have one or two outputs.

o A flip-flop is called so because its output either flips or flops

meaning to switch back and forth.

o A flip-flop is also called a bi-stable multi-vibrator as it has two

stable states. The input signals which command the flip-flop

to change state are called excitations.

o Flip-flops are storage devices and can store 1 or 0.

o Flip-flops using the clock signal are called clocked flip-flops.

Control signals are effective only if they are applied in

PREPARED BY -BHABODEEPIKA MOHANTY

synchronization with the clock signal.

o Clock-signals may be positive-edge triggered or negative-

edge triggered.

o Positive-edge triggered flip-flops are those in which state

transitions take place only at positive- going edge of the clock

pulse.

o Negative-edge triggered flip-flops are those in which state

transition take place only at negative- going edge of the clock

pulse.

o Some common type of flip-flops include

1. SR (set-reset) F-F

2. D (data or delay) F-F

3. T (toggle) F-F and

4. JK F-F

 SR latch:-

 The SR latch is a circuit with two cross-coupled NOR gates or

two cross-coupled NAND gates. It has two outputs labeled Q

and Q’. Two inputs are there labeled S for set and R foe reset.

 The latch has two useful states. When Q=0 and Q’=1 the condition is

called reset state and when Q=1 and Q’=0 the condition is called set

state.

 Normally Q and Q’ are complement of each other.

 The figure represents a SR latch with two cross-coupled NORgates.

PREPARED BY -BHABODEEPIKA MOHANTY

 The circuit has NOR gates and as we know if any one of the input for a

NOR gate is HIGH then its output will be LOW and if both the inputs

are LOW then only the output will be HIGH.

 Under normal conditions, both inputs of the latch remain at 0 unless

the state has to be changed. The application of a momentary 1 to the

S input causes the latch to go to the set state. The S input must go back

to 0 before any other changes take place, in order to avoid the

occurrence of an undefined next state that results from the forbidden

input condition.

 The first condition (S = 1, R = 0) is the action that must be taken by

input S to bring the circuit to the set state. Removing the active

input from S leaves the circuit in the same state. After both inputs

return to 0, it is then possible to shift to the reset state by

momentary applying a 1 to the R input. The 1 can then be removed

from R, whereupon the circuit remains in the reset state. When

both inputs S and R are equal to 0, the latch can be in either the set

or the reset state, depending on which input was most recently a

1.
 If a 1 is applied to both the S and R inputs of the latch, both outputs

go to 0. This action produces an undefined next state, because the state
that results from the input transitions depends on the order in which
they return to 0. It also violates the requirement that outputs be the
complement of each other. In normal operation, this condition is
avoided by making sure that 1’s are not applied to both inputs
simultaneously.

 Truth table for SR latch designed with NOR gates is shown below.

PREPARED BY -BHABODEEPIKA MOHANTY

Input Output
Comment

S R Q Q’ QNext Q’Next

0 0 0 1 0 1
No change

0 0 1 0 1 0

0 1 0 1 0 1
Reset

0 1 1 0 0 1

1 0 0 1 1 0
Set

1 0 1 0 1 0
1 1 0 1 X X Prohibite

d state 1 1 1 0 X X

Symbol for SR NOR Latch

Racing Condition:-

 In case of a SR latch when S=R=1 input is given both the output will

try to become 0. This is called Racing condition.

 SR latch using NAND gate:-

 The below figure represents a SR latch with two cross-coupled

NAND gates. The circuit has NAND gates and as we know if any one

of the input for a NAND gate is LOW then its output will be HIGH

and if both the inputs are HIGH then only the output will be LOW.

 It operates with both inputs normally at 1, unless the state of the latch

has to be changed. The application of 0 to the S input causes output Q

PREPARED BY -BHABODEEPIKA MOHANTY

to go to 1, putting the latch in the set state. When the S input goes back

to 1, the circuit remains in the set state. After both inputs go back to

1, we are allowed to change the state of the latch by placing a 0 in the

R input. This action causes the circuit to go to the reset state and stay

there even after both inputs return to 1.

 The condition that is forbidden for the NAND latch is both inputs being

equal to 0 at the same time, an input combination that should be avoided.

 In comparing the NAND with the NOR latch, note that the input signals for

the NAND require the complement of those values used for the NOR latch.

Because the NAND latch requires a 0 signal to change its state, it is

sometimes referred to as an S’R’ latch. The primes (or, sometimes, bars over
the letters) designate the fact that the inputs must be in their complement

form to activate the circuit.

The above represents the symbol for inverted SR

latch or SR latch using NAND gate. Truth table for

SR latch using NAND gate or Inverted SR latch

S R Qnext Q’next

0 0 Race Race

0 1 0 1 (Reset)
1 0 1 0 (Set)

1 1 Q (No change) Q’ (No change)

PREPARED BY -BHABODEEPIKA MOHANTY

D LATCH:-
 One way to eliminate the undesirable condition of the

indeterminate state in the SR latch is to ensure that inputs S

and R are never equal to 1 at the same time.

 This is done in the D latch. This latch has only two inputs: D

(data) and En (enable). The D input goes directly to the S input,

and its complement is applied to the R input.

(Symbol for D-Latch)

 As long as the enable input is at 0, the cross-coupled SR latch

has both inputs at the 1 level and the circuit can’t change state

regardless of the value of D.

 The below represents the truth table for the D-latch.

En D Next State of Q

0 X No change

1 0 Q=0;Reset State

1 1 Q=1;Set State

PREPARED BY -BHABODEEPIKA MOHANTY

 The D input is sampled when En = 1. If D = 1, the Q output goes

to 1, placing the circuit in the set state. If D = 0, output Q goes to

0, placing the circuit in the reset state. This situation provides a

path from input D to the output, and for this reason, the circuit

is often called a TRANSPARENT latch.

TRIGGERING METHODS:-

 The state of a latch or flip-flop is switched by a change in the

control input. This momentary change iscalled a trigger, and the

transition it causes is said to trigger the flip-flop.

 Flip-flop circuits are constructed in such a way as to make them

operate properly when they are part of a sequential circuit that

employs a common clock.

 The problem with the latch is that it responds to a change in the
level of a clock pulse. For proper operation of a flip-flop it
should be triggered only during a signal transition.

 This can be accomplished by eliminating the feedback path that

is inherent in the operation of the sequential circuit using

latches. A clock pulse goes through two transitions: from 0 to 1

and the return from 1 to 0.

 A ways that a latch can be modified to form a flip-flop is to

produce a flip-flop that triggers only during a signal transition

(from 0 to 1 or from 1 to 0) of the synchronizing signal (clock)

and is disabled during the rest of the clock pulse.

JK FLIP-FLOP:-

 The JK flip-flop can be constructed by using basic SR latch and

PREPARED BY -BHABODEEPIKA MOHANTY

a clock. In this case the outputs Qand Q’ are returned back

and connected to the inputs of NAND gates.

 This simple JK flip Flop is the most widely used of all the flip-

flop designs and is considered to be a universal flip-flop circuit.

 The sequential operation of the JK flip flop is exactly the

same as for the previous SR flip-flop with the same “Set”

and “Reset” inputs.

 The difference this time is that the “JK flip flop” has no invalid

or forbidden input states of the SR Latch even when S and R are

both at logic “1”.

(The below diagram shows the circuit diagram of a JK flip-flop)

 The JK flip flop is basically a gated SR Flip-flop with the addition of a

clock input circuitry that prevents the illegal or invalid output

condition that can occur when both inputs S and R are equal to logic

level “1”.

 Due to this additional clocked input, a JK flip-flop has four possible input
combinations, “logic 1”, “logic 0”, “no change” and “toggle”.

 The symbol for a JK flip flop is similar to that of an SR bistable latch except
the clock input.

(The above diagram shows the symbol of a JK flip-flop.)

 Both the S and the R inputs of the SR bi-stable have now been replaced
by two inputs called the J and K inputs, respectively after its inventor

PREPARED BY -BHABODEEPIKA MOHANTY

Jack and Kilby. Then this equates to: J = S and K = R.
 The two 2-input NAND gates of the gated SR bi-stable have now been

replaced by two 3-input NAND gates with the third input of each gate
connected to the outputs at Q and Q’.

 This cross coupling of the SR flip-flop allows the previously invalid
condition of S = “1” and R = “1” state to be used to produce a “toggle
action” as the two inputs are now interlocked.

 If the circuit is now “SET” the J input is inhibited by the “0” status of Q’

through the lower NAND gate. If the circuit is “RESET” the K input is

inhibited by the “0” status of Q through the upper NAND gate. As Q

and Q’ are always different we can use them to control the input.

(Truth table for JK flip-flop)

Input Output

 When both inputs J and K are equal to logic “1”, the JK flip flop

toggles.

T FLIP-FLOP:-

 Toggle flip-flop or commonly known as T flip-flop.

 This flip-flop has the similar operation as that of the JK flip-flop

with both the inputs J and K are shorted i.e. both are given the

common input.

 Comment
J K Q Qnext

0 0 0 0
No change

0 0 1 1
0 1 0 0

Reset
0 1 1 0

1 0 0 1 Set
1 0 1 1

1 1 0 1
Toggle

1 1 1 0

PREPARED BY -BHABODEEPIKA MOHANTY

 Hence its truth table is same as that of JK flip-flop when J=K= 0 and
J=K=1.So its truth table is as follow

T Q Qnext Comment

0 0 0 No change

1 1
1 0 1 Toggles

1 0

MASTER-SLAVE JK FLIP-FLOP:-

 The Master-Slave Flip-Flop is basically two gated SR flip-

flops connected together in a series configuration with the

slave having an inverted clock pulse.

 The outputs from Q and Q’ from the “Slave” flip-flop are fed back to
the inputs of the “Master” with the outputs of the “Master” flip flop

being connected to the two inputs of the “Slave” flip flop.
 This feedback configuration from the slave’s output to the master’s

input gives the characteristic toggle of the JK flip flop as shown

below.

PREPARED BY -BHABODEEPIKA MOHANTY

The Master-Slave JK Flip Flop

PREPARED BY -BHABODEEPIKA MOHANTY

o The input signals J and K are connected to the gated
“master” SR flip flop which “locks” the input condition
while the clock (Clk) input is “HIGH” at logic level “1”.

o As the clock input of the “slave” flip flop is the inverse

(complement) of the “master” clock input, the “slave” SR flip

flop does not toggle.

o The outputs from the “master” flip flop are only “seen” by the

gated “slave” flip flop when the clock input goes “LOW” to

logic level “0”.
o When the clock is “LOW”, the outputs from the “master”

flip flop are latched and any additional changes to its inputs
are ignored.

o The gated “slave” flip flop now responds to the state of its

inputs passed over by the “master” section. Then on the

“Low-to-High” transition of the clock pulse the inputs of the

“master” flip flop are fed through to the gated inputs of the

“slave” flip flop and on the “High-to-Low” transition the

same inputs are reflected on the output of the “slave” making

this type of flip flop edge or pulse-triggered.

o Then, the circuit accepts input data when the clock signal is

“HIGH”, and passes the data to the output on the falling-edge
of the clock signal.

o In other words, the Master-Slave JK Flip flop is a “Synchronous” device as
it only passes data with the timing of the clock signal.

 Race around condition

Introduction

Before getting into the race around condition, let us have a look at the JK

flip-flop's truth table.

PREPARED BY -BHABODEEPIKA MOHANTY

 Here, Q is the present state and Q' is the next state. As you can see, when J, K and

Clock are equal to 1, toggling takes place, i.e. The next state will be equal to the

complement of the present state.

 Now, let us look at the timing diagram of JK flip-flop

PREPARED BY -BHABODEEPIKA MOHANTY

 Here, T is the time period of the clock whereas delta t is the propagation delay.

The delay between input and output is called a propagation delay.

 This is what was expected, but the output may not be like this all the time.

This is where Race around condition comes into the play.

 Let us look at the timing diagram of JK flip-flop when the race around condition is

considered.

 As you already know, when J, K and Clock are equal to 1, toggling takes

place. Here, propagation delay has also been reduced, so the output will

be given out at the instant input is given. So there is a toggling again.

Therefore, whenever Clock is equal to 1 there are consecutive toggling.

This condition is called as Race around condition. To put it in words, " For

JK flip-flop if J, K and Clock are equal to 1 the state of flip-flop keeps on

toggling which leads to uncertainty in determining the output of the flip-

flop. This problem is called Race around the condition. "' This condition

also exists in T flip-flop since T flip- flop also has toggling options.

 Methods to eliminate race around condition

There are three methods to eliminate race around condition as described below:

PREPARED BY -BHABODEEPIKA MOHANTY

 Increasing the delay of flip-flop

The propagation delay (delta t) should be made greater than the duration of the

clock pulse (T). But it is not a good solution as increasing the delay will decrease

the speed of the system.

 Use of edge-triggered flip-flop

If the clock is High for a time interval less than the propagation delay of the flip

flop then racing around condition can be eliminated. This is done by using the

edge-triggered flip flop rather than using the level-triggered flip-flop.

 Use of master-slave JK flip-flop

If the flip flop is made to toggle over one clock period then racing around

condition can be eliminated. This is done by using Master-Slave JK flip-flop.

PREPARED BY -BHABODEEPIKA MOHANTY

Unit-4: Registers, Memories & PLD

REGISTER:-

The sequential circuits known as register are very

important logical block in most of the digital

systems.

Registers are used for storage and transfer of

binary information in a digital system.

A register is mostly used for the purpose of storing

and shifting binary data entered into it from an

external source and has no characteristics internal

sequence of states.

The storage capacity of a register is defined as the number
of bits of digital

data, it can store or retain.

These registers are normally used for temporary storage of

data.

An n-bit register consists of a group of n flip- flops

capable of storing n bits of binary information.

A register consists a group of flip-flops and gates that
effect their transition.

o The flip-flops hold the binary information.

o The gates determine how the information

is transferred into the register.

BUFFER REGISTER:-

These are the simplest registers and are used for

simply storing a binary word.

These may be controlled by Controlled Buffer Register.

D flip - flops are used for constructing a buffer

register or other flip- flop can be used.

The figure shown below is a 4- bit buffer register.

PREPARED BY -BHABODEEPIKA MOHANTY

SHIFT REGISTER:-

A register capable of shifting its binary information

in one or both direction is called a shift register.

All flip-flops receive common clock pulses, which

activate the shift from one stage to the next.

CONTROLLED BUFFER REGISTER:-

A number of FFs connected together such that data

may be shifted into and shifted out of them is

called a shift register.

Data may be shifted into or out of the register

either in serial form or in parallel form.

There are four basic types of shift registers

1. Serial in, serial out

2. Serial in, parallel out

3. Parallel in, serial out

4. Parallel in , parallel out

SERIAL IN, SERIAL OUT SHIFT REGISTER:-

This type of shift register accepts data serially, i.e.,

one bit at a time and also outputs data serially.

The logic diagram of a four bit serial in, serial out

shift register is shown in below figure:

In 4 stages i.e. with 4 FFs, the register can store upto 4 bits
of data.

Serial data is applied at the D input of the first FF.

The Q output of the first FF is connected to the D

input of the second FF, the output of the second FF is

connected to the D input of the third FF and the Q

output of the third FF is connected to the D input of

PREPARED BY -BHABODEEPIKA MOHANTY

the fourth FF. The data is outputted from the Q

terminal of the last FF.

When a serial data is transferred to a register, each

new bit is clocked into the first FF at the positive

going edge of each clock pulse.

The bit that is previously stored by the first FF is
transferred to the second FF.

The bit that is stored by the second FF is transferred to the

third FF, and so on.

The bit that was stored by the last FF is shifted out.

A shift register can also be constructed using J-K FFs or S-R

FFs as shown in the figure below

SERIAL IN, PARALLEL OUT SHIFT REGISTER:-

In this type of register, the data bits are entered into

the register serially, but the data stored in the

PREPARED BY -BHABODEEPIKA MOHANTY

register serially, but the stored in the register is

shifted out in the parallel form.

 When the data bits are stored once, each bits appears on its
respective output

line and all bits are available simultaneously, rather

than bit - by - bit basis as in the serial output.

 The serial in, parallel out shift register can be used as a serial
in, serial out

shift register if the output is taken from the Q terminal of

the last FF.

 The logic diagram and logic symbol of a 4 bit

serial in, parallel out shift register is given

below.

A 4- bit serial in, parallel out shift register

PARALLEL IN, SERIAL OUT SHIFT REGISTER:-

 For parallel in, serial out shift register the data bits

are entered simultaneously into their respective

stages on parallel lines, rather than on bit by bit basis

on one line as with serial data inputs, but the data

PREPARED BY -BHABODEEPIKA MOHANTY

bits are transferred out of the register serially, i.e., on

a bit by bit basis over a single line.

The logic diagram and logic symbol of 4 bit parallel

in, serial out shift register using D FFs is shown

below.

There are four data lines A, B, C and D through

which the data is entered into the register in parallel

form.

The signal Shift /LOAD allows

1. The data to be entered in parallel form into the register

and

2. The data to be shifted out serially from terminal Q4.

When Shift /LOAD line is HIGH, gates G1, G2, and G3

are disabled, but gates G4, G5 and G6 are enabled

allowing the data bits to shift right from one stage to

next.

When Shift /LOAD line is LOW, gates G4, G5 and G6 are
disabled, whereas

gates G1, G2 and G3 are enabled allowing the data

input to appear at the D inputs of the respective FFs.

When clock pulse is applied, these data bits are shifted to
the Q output

terminals of the FFs and therefore the data is inputted in

one step.

The OR gate allows either the normal shifting

operation or the parallel data entry depending on

which AND gates are enabled by the level on the

Shift

PREPARED BY -BHABODEEPIKA MOHANTY

/LOAD input.

A 4- bit parallel in, serial out shift register

PARALLEL IN, PARALLEL OUT SHIFT REGISTER:-

In a parallel in, parallel out shift register, the data

entered into the register in parallel form and also

the data taken out of the register in parallel form.

Immediately following the simultaneous entry of

all data bits appear on the parallel outputs.

The figure shown below is a 4 bit parallel in parallel out
shift register using D

FFs.

Data applied to the D input terminals of the FFs.

When a clock pulse is applied at the positive edge

of that pulse, the D inputs are shifted into the Q

outputs of the FFs.

The register now stores the data.

The stored data is available instantaneously for shifting

PREPARED BY -BHABODEEPIKA MOHANTY

out in parallel form.

Logic diagram of a 4 - bit parallel in,

parallel out shift register

UNIVERSAL SHIFT REGISTERS:-

 The register which has both shifts and parallel load

capabilities, it is referred as a universal shift

register. So, universal shift register is a bidirectional

register, whose input can be either in serial form or

in parallel form and whose output also can be either

in serial form or parallel form.

 The universal shift register can be realized using
multiplexers.

APPLICATIONS OF SHIFT REGISTERS:-

1. Time delays:

 In digital systems, it is necessary to delay the

transfer of data until the operation of the other

data have been completed, or to synchronize

the arrival of data at processed with other data.

A shift register can be used to delay the arrival of

serial data by a subsystem where it is specific

number of clock pulses, since the number of

PREPARED BY -BHABODEEPIKA MOHANTY

stages corresponds to the number of clock pulses

required to shift each bit completely through the

register.

 The total time delay can be controlled by

adjusting the clock frequency and by the

number of stages in the register.

 In practice, the clock frequency is fixed and the

total delay can be adjusted only by controlling the

number of stages through which the data is

passed.

2. Serial / Parallel data conversion:

 Transfer of data in parallel form is much faster than that

in serial form.

 Similarly the processing of data is much faster

when all the data bits are available

simultaneously. Thus in digital systems in

which speed is important so to operate on data

parallel form is used.

 When large data is to be transmitted over long
distances, transmitting data

on parallel lines is costly and impracticable.

 It is convenient and economical to transmit data

in serial form, since serial data transmission

requires only one line.

 Shift registers are used for converting serial data

to parallel form, so that a serial input can be

processed by a parallel system and for converting

parallel data to serial form, so that parallel data

can be transmitted serially.

 A serial in, parallel out shift register can be used to
perform serial-to

PREPARED BY -BHABODEEPIKA MOHANTY

parallel conversion, and a parallel in, serial out shift

register can be used to perform parallel- to -serial

conversion.

 A universal shift register can be used to

perform both the serial- to - parallel and

parallel-to- serial data conversion.

 A bidirectional shift register can be used to reverse the
order ofdata

COUNTER

 A counter is a device which stores (and sometimes

displays) the number of times a particular event or

process has occurred. In electronics, counters can

be implemented quite easily using register-type

circuits.

 There are different types of counters, viz.

o Asynchronous (ripple) counter

o Synchronous counter

o Decade counter

o Up/down counter

o Ring counter

o Johnson counter

o Cascaded counter

PREPARED BY -BHABODEEPIKA MOHANTY

o Modulus counter.

Synchronous counter

A 4-bit synchronous counter using JK flip-flops is shown

in the figure.

In synchronous counters, the clock inputs of all the

flip-flops are connected together and are triggered

by the input pulses. Thus, all the flip-flops change

state simultaneously (in parallel).

The circuit below is a 4-bit synchronous counter.

The J and K inputs of FF0 are connected to HIGH.

FF1 has its J and K inputs connected to the output of

FF0, and the J and K inputs of FF2 are connected to

the output of an AND gate that is fed by the outputs

of FF0 and FF1.

A simple way of implementing the logic for each bit of an
ascending counter

(which is what is depicted in the image to the right)

PREPARED BY -BHABODEEPIKA MOHANTY

is for each bit to toggle when all of the less

significant bits are at a logic high state.

For example, bit 1 toggles when bit 0 is logic high; bit 2
toggles when both bit

1 and bit 0 are logic high; bit 3 toggles when bit 2, bit

1 and bit 0 are all high; and so on.

Synchronous counters can also be implemented

with hardware finite state machines, which are

more complex but allow for smoother, more

stable transitions.

Asynchronous Counter :-

An asynchronous (ripple) counter is a single d-type

flip-flop, with its J (data) input fed from its own

inverted output.

This circuit can store one bit, and hence can count

from zero to one before it overflows (starts over

PREPARED BY -BHABODEEPIKA MOHANTY

from 0).

This counter will increment once for every clock

cycle and takes two clock cycles to overflow, so

every cycle it will alternate between a transition

from 0 to 1 and a transition from 1 to 0.

This creates a new clock with a 50% duty cycle at exactly
half the frequency of

the input clock.

If this output is then used as the clock signal for a

similarly arranged D flip- flop, remembering to

invert the output to the input, one will get another 1

bit counter that counts half as fast. These together

yield a two-bit counter.

Additional flip-flops can be added, by always

PREPARED BY -BHABODEEPIKA MOHANTY

inverting the output to its own input, and using the

output from the previous flip-flop as the clock

signal. The result is called a ripple counter, which

can count to 2n - 1, where n is the number of bits

(flip-flop stages) in the counter.

 Ripple counters suffer from unstable outputs as the
overflows "ripple" from

stage to stage, but they find application as dividers for

clock signals.

Modulus Counter

 A modulus counter is that which produces an

output pulse after a certain number of input

pulses is applied.

 In modulus counter the total count possible is based

on the number of stages, i.e., digit positions.

Modulus counters are used in digital computers.

A binary modulo-8 counter with three flip-flops,

i.e., three stages, will produce an output pulse, i.e.,

display an output one-digit, after eight input

pulses have been counted, i.e., entered or applied.

This assumes that the counter started in the zero-

condition.

Asynchronous Decade Counter/MOD-10 Counter

A decade counter can count from BCD "0" to BCD "9".

A decade counter requires resetting to zero when

the output count reaches the decimal value of 10, ie.

when DCBA = 1010 and this condition is fed back to

PREPARED BY -BHABODEEPIKA MOHANTY

the reset input.

A counter with a count sequence from binary "0000" (BCD
= "0") through to

"1001" (BCD = "9") is generally referred to as a BCD

binary-coded-decimal counter because its ten state

sequence is that of a BCD code but binary decade

counters are more common.

This type of asynchronous counter counts upwards on
each leading edge of

the input clock signal

starting from 0000 until it reaches an output 1001 (decimal

9).

Both outputs QA and QD are now equal to logic "1"

and the output from the NAND gate changes state

from logic "1" to a logic "0" level and whose output is

also connected to the CLEAR (CLR) inputs of all the

J-K Flip-flops.

This signal causes all of the Q outputs to be reset back to
binary 0000 on the

count of 10. Once QA and QD are both equal to

logic "0" the output of the NAND gate returns back

to a logic level "1" and the counter restarts again

from 0000. We now have a decade or Modulo-10

counter.

D

PREPARED BY -BHABODEEPIKA MOHANTY

Decade Counter Truth Table

Up/Down Counter

 In a synchronous up-down binary counter the

flip-flop in the lowest-order position is

complemented with every pulse.

 A flip-flop in any other position is complemented

with a pulse, provided all the lower-order pulse

equal to 0.

 Up/Down counter is used to control the direction

of the counter through a certain sequence.

PREPARED BY -BHABODEEPIKA MOHANTY

From the sequence table we can observe that:

o For both the UP and DOWN sequences, Q0 toggles on

each clock pulse.

o For the UP sequence, Q1 changes state on the next clock

pulse when Q0=1.

o For the DOWN sequence, Q1 changes state on

the next clock pulse when Q0=0.

o For the UP sequence, Q2 changes state on the

next clock pulse when Q0=Q1=1.

o For the DOWN sequence, Q2 changes state on

the next clock pulse when Q0=Q1=0.

o These characteristics are implemented with the

AND, OR & NOT logic connected as shown in

the logic diagram above

PREPARED BY -BHABODEEPIKA MOHANTY

RING AND JOHNSON COUNTER:-

Ring counters are constructed by modifying the

serial-in, serial-out, shift register.

There are two types of ring counters

i) Basic ring counter

ii) Johnson counter

The basic ring counter can be obtained from a serial-

in serial- out shift register by connecting the Q output

of the last FF to the D input of the first FF.

The Johnson counter can be obtained from serial-in,

serial- out, shift register by connecting the Q output

of the last FF to the D input of the first FF.

Ring counter outputs can be used as a sequence of
synchronizing pulses.

Then by looping the output back to the input,

(feedback) we can convert a standard shift register

circuit into a ring counter. Consider the circuit

below.

4- bit Ring Counter:-

The synchronous Ring Counter example above, is preset

so that exactly one data bit in the register is set to

logic "1" with all the other bits reset to "0".

To achieve this, a "CLEAR" signal is firstly

applied to all the flip-flops together in order to

"RESET" their outputs to a logic "0" level and

hen a "PRESET" pulse is

applied to the input of the first flip-

flop (FFA) before the clock pulses are

PREPARED BY -BHABODEEPIKA MOHANTY

applied. This then places a single logic

"1" value into the circuit of the ring

counter.

So on each successive clock pulse, the

counter circulates the same data bit

between the four flip-flops over and

over again around the ring" every

fourth clock cycle. But in order to cycle

the data correctly around the counter

we must first "load" the counter with a

suitable data pattern as all logic "0's" or

all logic "1's" outputted at each clock

cycle would make the ring counter

invalid.

This type of data movement is called "rotation", and like

the previous shift register, the effect of the movement of

the data bit from left to right through a ring counter can

be presented graphically as follows along with its timing

diagram:

Rotational Movement of a Ring Counter

PREPARED BY -BHABODEEPIKA MOHANTY

Concept of Memory

 Computer memory is a generic term for all of the

different types of data storage technology that a

computer may use, including RAM, ROM, and flash

memory.

 Some types of computer memory are designed to be

very fast, meaning that the central processing unit

(CPU) can access data stored there very quickly.

Other types are designed to be very low cost, so that

large amounts of data can be stored there

economically.

 Another way that computer memory can vary is that some
types

are non-volatile, which means they can store data on

a long term basis even when there is no power. And

some types are volatile, which are often faster, but

which lose all the data stored on them as soon as the

power is switched off.

Types of Computer Memory: Primary and Secondary

The most basic distinction is between primary memory,

often called system memory, and secondary memory,

which is more commonly called storage.

The key difference between primary and secondary memory is

speed of access.

 Primary memory includes ROM and RAM, and is

PREPARED BY -BHABODEEPIKA MOHANTY

located close to the CPU on the computer

motherboard, enabling the CPU to read data from

primary memory very quickly indeed. It is used to

store data that the CPU needs imminently so that it

does not have to wait for it to be delivered.

 Secondary memory is usually physically located

within a separate storage device, such as a hard disk

drive or solid state drive (SSD), which is connected to

the computer system either directly or over a

network. The cost per gigabyte

of secondary memory is much lower, but the read and

write speeds are significantly slower.

Primary Memory:-

There are two key types of primary memory:

1. RAM, or random access memory

2. ROM, or read-only memory

1) RAM:-

 It is also called as read write memory or the

PREPARED BY -BHABODEEPIKA MOHANTY

main memory or the primary memory.

 The programs and data that the CPU requires

during execution of a program are stored in this

memory.

 It is a volatile memory as the data loses when

the power is turned off.

 RAM is further classified into two types- SRAM

(Static Random Access Memory) and DRAM

(Dynamic Random Access Memory).

 DRAM: DRAM stands for Dynamic RAM, and it is

the most common type of RAM used in computers.

The oldest type is known as single data rate (SDR)

DRAM, but newer computers use faster dual data

rate (DDR) DRAM. DDR

comes in several versions including DDR2 , DDR3, and

DDR4, which offer better performance and are more

energy efficient than DDR.

 SRAM: SRAM stands for Static RAM, and it is a

particular type of RAM which is faster than DRAM,

PREPARED BY -BHABODEEPIKA MOHANTY

but more expensive and bulker, having six transistors

in each cell. For those reasons SRAM is generally only

used as a data cache within a CPU itself or as RAM in

very high-end server systems.

PREPARED BY -BHABODEEPIKA MOHANTY

2) ROM:-

 Stores crucial information essential to operate

the system, like the program essential to boot

the computer.

 It is not volatile.

 Always retains its data.

 Used in embedded systems or where the programming

needs no change.

 Used in calculators and peripheral devices.

 ROM is further classified into 4 types- ROM,

PROM, EPROM, and EEPROM.

 ROM is also used in simpler electronic devices to

store firmware which runs as soon as the device is

switchedon.

Differences between RAM and ROM

PLD:-

In a PLD (Programmable Logic Device) technology,

layers implement a programmable circuit, where

programming has a lower-level meaning than a

PREPARED BY -BHABODEEPIKA MOHANTY

software program.

The programming that takes place may consist

of creating or destroying connections between

wires that connect gates, either by blowing a

fuse, or setting a bit in a programmable switch.

Small devices, called programmers, connected to a

desktop computer can typically perform such

programming.

PLD's of two types, simple and complex. One type

of simple PLD is a PLA (Programmable Logic

Array), which consists of a programmable array of

AND gates and a programmable array of OR gates.

Another type is a PAL (Programmable Array

Logic), which uses just one programmable array

to reduce the number of expensive programmable

components.

One type of complex PLD, growing very rapidly in

popularity over the past decade, is the FPGA (Field

Programmable Gate Array), which offers more

general connectivity among blocks of logic, rather

than just arrays of logic as with PLAs and PALs, and

are thus able to implement far more complex

designs. PLDs offer very low NRE cost and almost

instant IC availability.

They are typically bigger than ASICs, may have higher

unit cost, may consume more power, and may be slower

(especially FPGAs). They still provide reasonable

PREPARED BY -BHABODEEPIKA MOHANTY

performance, though, so are especially well suited to rapid

prototyping.

Flowchart of PLD:-

Application of PLD:-

High performance computing

Network Processing

Big Data processing

Genomics

High Frequency trading

PREPARED BY -BHABODEEPIKA MOHANTY

Unit-5: A/D and D/A Converters

 D/A and A/D Converter

 A Digital to Analog Converter (DAC) converts a digital

input signal into an analog output signal. The digital signal

is represented with a binary code, which is a combination of

bits 0 and 1.

The block diagram of DAC is shown in the following figure −

A Digital to Analog Converter (DAC) consists of a number of binary

inputs and a single output. In general, the number of binary inputs of a

DAC will be a power of two.

 Weighted Register Network

 The most significant bit (MSB) resistance is one-eighth of the

least significant bit (LSB) resistance. RL is much larger than 8R.

 The voltages VA, VB, VC and VD can be either equal to V (for

logic 1) or 0 (for logical 0). Thus there are 24 = 16 input

combinations from 0000 to 1111.

 The output voltage V0, given by Millman’s theorem is V0 =When

input is 0001, VA=VB=VC = 0 and VD = V and output is V/15. If

input is 0010, VA=VB=VD = 0 and VC =V giving an output of

2V/15. If input is 0011, VA=VB =0 and VC = VD =V giving an

output of 3v/15. Thus, the output voltage varies from 0 to V in

steps of

V/15.

PREPARED BY -BHABODEEPIKA MOHANTY

Digital Inputs VOUT

D C B A V/15

0 0 0 0 0v

0 0 0 1 0.066v

0 0 1 0 0.133v

0 0 1 1 0.2v

0 1 0 0 0.26v

0 1 0 1 0.33v

0 1 1 0 0.4v

0 1 1 1 0.46v

1 0 0 0 0.53v

1 0 0 1 0.6v

1 0 1 0 0.66v

1 0 1 1 0.73v

1 1 0 0 0.8v

1 1 0 1 0.86v

1 1 1 0 0.93v

1 1 1 1 1v

PREPARED BY -BHABODEEPIKA MOHANTY

𝑅 + { }

 Binary Ladder Network

 The weighted resistor network requires a range of resistor

values.

 The binary ladder network requires only two resistance values.

 From node 1, the resistance to the digital source is 2R and

resistance to ground is also 2R.

 From node 2, the resistance to digital source is 2R and resistance
(2R)(2R)

to ground =
(2R+2R)

= 2R Thus, from each of the nodes

1,2,3,4, the resistance to source and ground is 2R each.

 A digital input 0001 means that D is connected to V and A, B, C

are grounded. The output voltage V0 is V/16.

 Thus as input varies from 0000 to 1111, the output varies from

V/16 to V in steps of V/16. A complete digital-to-analog

converter circuit consists of a number of ladder networks (to

deal with more bits of data), operational amplifier, gates etc.

 Analog to Digital Converter:-

An Analog to Digital Converter (ADC) converts an analog signal into a

digital signal. The digital signal is represented with a binary code,

which is a combination of bits 0 and 1.

The block diagram of an ADC is shown in the following figure −

PREPARED BY -BHABODEEPIKA MOHANTY

Observe that in the figure shown above, an Analog to Digital

Converter (ADC) consists of a single analog input and many binary

outputs. In general, the number of binary outputs of ADC will be a

power of two.

There are two types of ADCs: Direct type ADCs and Indirect type ADC.

If the ADC performs the analog to digital conversion directly by

utilizing the internally generated equivalent digital (binary) code for

comparing with the analog input, then it is called as Direct type ADC.

The following are the examples of Direct type ADCs −

 Counter type ADC

 Successive Approximation ADC

 Counter type ADC

A counter type ADC produces a digital output, which is approximately

equal to the analog input by using counter operation internally.

The block diagram of a counter type ADC is shown in the following

figure −

PREPARED BY -BHABODEEPIKA MOHANTY

The counter type ADC mainly consists of 5 blocks: Clock signal

generator, Counter, DAC, Comparator and Control logic.

The working of a counter type ADC is as follows −

 The control logic resets the counter and enables the clock signal

generator in order to send the clock pulses to the counter, when it

received the start commanding signal.

 The counter gets incremented by one for every clock pulse and its

value will be in binary (digital) format. This output of the counter

is applied as an input of DAC.

 DAC converts the received binary (digital) input, which is the

output of counter, into an analog output. Comparator compares

this analog value,VaVa with the external analog input value ViVi.

 The output of comparator will be ‘1’ as long as 𝑉𝑖 is greater than.

The operations mentioned in above two steps will be continued as

long as the control logic receives ‘1’ from the output of

comparator.

 The output of comparator will be ‘0’ when ViVi is less than or

equal to VaVa. So, the control logic receives ‘0’ from the output of

comparator. Then, the control logic disables the clock signal

generator so that it doesn’t send any clock pulse to the counter.

 At this instant, the output of the counter will be displayed as

the digital output. It is almost equivalent to the corresponding

external analog input value ViVi.

PREPARED BY -BHABODEEPIKA MOHANTY

Successive Approximation ADC

A successive approximation type ADC produces a digital output,

which is approximately equal to the analog input by using successive

approximation technique internally.

The block diagram of a successive approximation ADC is shown in the

following figure

The successive approximation ADC mainly consists of 5 blocks− Clock

signal generator, Successive Approximation Register (SAR), DAC,

comparator and Control logic.

The working of a successive approximation ADC is as follows −

 The control logic resets all the bits of SAR and enables the clock

signal generator in order to send the clock pulses to SAR, when it

received the start commanding signal.

 The binary (digital) data present in SAR will be updated for every

clock pulse based on the output of comparator. The output of SAR

is applied as an input of DAC.

 DAC converts the received digital input, which is the output of

SAR, into an analog output. The comparator compares this analog

value VaVa with the external analog input value ViVi.

 The output of a comparator will be ‘1’ as long as ViVi is greater

than VaVa. Similarly, the output of comparator will be ‘0’,

when ViVi is less than or equal to VaVa.

PREPARED BY -BHABODEEPIKA MOHANTY

 The operations mentioned in above steps will be continued until

the digital output is a valid one.

The digital output will be a valid one, when it is almost equivalent to

the corresponding external analog input value Vi.

PREPARED BY -BHABODEEPIKA MOHANTY

Unit-6: LOGIC FAMILIES

LOGIC FAMILIES

 A circuit configuration or approach used to produce a type of

digital integrated circuit is called LogicFamily.

 By using logic families we can generate different logic functions,

when fabricated in the form of an IC with the same approach, or in

other words belonging to the same logic family, will have identical

electrical characteristics.

 The set of digital ICs belonging to the same logic family are

electrically compatible with each other.

 Some common Characteristics of the Same Logic Family include

Supply voltage range, speed of response, power dissipation, input

and output logic levels, current sourcing and sinking capability,

fanout, noise margin, etc.

 Choosing digital ICs from the same logic family guarantees that

these ICs are compatible with respect to each other and that the

system as a whole performs the intended logic function.

TYPES OF LOGIC FAMILY:-

 The entire range of digital ICs is fabricated using either bipolar

devices or MOS devices or a combination of the two.

 Bipolar families include:-

 Diode logic (DL)

 Resistor-Transistor logic (RTL)

 Diode-transistor logic (DTL)

 Transistor- Transistor logic (TTL)

 Emitter Coupled Logic (ECL)

 Integrated Injection logic (I2L)

PREPARED BY -BHABODEEPIKA MOHANTY

 The Bi-MOS logic family uses both bipolar and MOS devices.

Some example of DL, RTL and DTL

MOS families include:-

 ThePMOS family (using P-channel MOSFETs)

 The NMOS family (using N-channel MOSFETs)

 The CMOS family (using both N- and P-channel devices)

Characteristics of Digital IC:-

 Propagation delay

 Fan out

 Fan in

 Power dissipation

 Noise Margin

 Power Supply Requriment

 Speed of response

 Voltage level

 Current Level

 Operating Temperature

 Noise immunity

Propagation Delay time:-

 When a signal passes (propagates) through a logic circuit, it

always experiences a time delay. A change in the output level

PREPARED BY -BHABODEEPIKA MOHANTY

always occurs a short time, called 'propagation delay time', later

than the change in the input level that caused it.

Fan Out:-

 When the output of a logic gate is connected to one or more inputs

of other gates, a load on the driving gate is created. There is a limit

to the number of load gates that a given gate can drive. This limit

is called the 'Fan-Out' of the gate.

Fan In:-

 It is the maximum number of inputs which the logic circuit can

handle.

Power Dissipation:-

 A logic gate draws ICCH current from the supply when the gate is

in the HIGH output state, draws ICCL current from the supply in

the LOW output state.

 Average power isPD = VCC ICC where ICC = (ICCH + ICCL) / 2

Noise Margin:-

 A measure of a circuit's noise immunity is called 'noise margin'

which is expressed in volts.

 There are two values of noise margin specified for a given logic

circuit: the HIGH (VNH) and LOW (VNL) noise margins.

 These are defined by following equations :

VNH = VOH (Min) - VIH (Min) VNL = VIL (Max) - VOL (Max)

Power Supply Requirement:-

 It is the maximum value of voltage and power required for

operation.

 IHL – High level input current. It is the minimum input current

which must be supplied to the Ic to get level ”1” Voltage.

 IIL – Low level input current. It the minimum input current which

must be supplied to the Ic to get Level ”0” voltage.

 IOH- High level output current. It the maximum output current for

level “1” voltage.

 IOL - Low level output current. It the maximum output current for

level “0” voltage.

 VIH – High level input voltage.

 VIL – Low level input voltage.

PREPARED BY -BHABODEEPIKA MOHANTY

 VOH – High level output voltage.

 VIL – Low level output Voltage.

Speed of operation:-

 The input and output pulses cannot change level simultaneously.

Moreover output does not appear immediately after providing

input. It means Ic takes some time to respond to the input. This is

expressed as speed of operator of the Ic.

24/11/2020

TRANSISTOR-TRANSISTOR LOGIC:-

 In Transistor-Transistor logic or just TTL, logic gates are built only

around transistors.

 TTL was developed in 1965. Through the years basic TTL has been

improved to meet performance requirements. There are many

versions or families of TTL. For example

 Standard TTL

 High Speed TTL (twice as fast, twice as much power)

 Low Power TTL (1/10 the speed, 1/10 the power of

“standard" TTL)

 Schhottky TTL etc. (for high-frequency uses)

 All TTL logic families have three configurations for outputs

1. Totem pole output

2. Open collector output

PREPARED BY -BHABODEEPIKA MOHANTY

3. Tristate output

Fundamentals of TTL:-

TTL inputs are the emitter of bipolar junction

transistor. In case of NAND inputs the inputs are

the emitter of the multiple emitter transitor.

When both the inputs are 1 the base emitter

junction of multiple input transistor is reverse

bias a small collector current is drawn by each of the

inputs. This current passes through

Two input TTL NAND with a simple output stage

26/11/2020

