
Prepard By
D Susmita Page 1

DATABASE MANAGEMENT SYSTEM

4th Semester

Theory-4

Prepared By – D SUSMITA

Sr.Lecturer in Information Technology

Prepard By
D Susmita Page 2

BOSE, CUTTACK

What is DBMS?

Database management system is software that is used to

manage the database.

What is Database

The database is a collection of inter-related data which is used to retrieve,

insert and delete the data efficiently. It is also used to organize the data in

the form of a table, schema, views, and reports, etc.

For example: The college Database organizes the data about the admin, staff,

students and faculty etc.

Using the database, you can easily retrieve, insert, and delete the information.

Database Management System

o Database management system is a software which is used to manage the database. For

example: MySQL, Oracle, etc are a very popular commercial database which is used in different

applications.

o DBMS provides an interface to perform various operations like database creation, storing data in it,

updating data, creating a table in the database and a lot more.

o It provides protection and security to the database. In the case of multiple users, it also maintains data

consistency.

DBMS allows users the following tasks:

https://www.javatpoint.com/mysql-tutorial
https://www.javatpoint.com/oracle-tutorial

Prepard By
D Susmita Page 3

o Data Definition: It is used for creation, modification, and removal of definition that defines the

organization of data in the database.

o Data Updation: It is used for the insertion, modification, and deletion of the actual data in the database.

o Data Retrieval: It is used to retrieve the data from the database which can be used by applications for

various purposes.

o User Administration: It is used for registering and monitoring users, maintain data integrity, enforcing

data security, dealing with concurrency control, monitoring performance and recovering information

corrupted by unexpected failure.

Characteristics of DBMS

o It uses a digital repository established on a server to store and manage the information.

o It can provide a clear and logical view of the process that manipulates data.

o DBMS contains automatic backup and recovery procedures.

o It contains ACID properties which maintain data in a healthy state in case of failure.

o It can reduce the complex relationship between data.

o It is used to support manipulation and processing of data.

o It is used to provide security of data.

o It can view the database from different viewpoints according to the requirements of the user.

Advantages of DBMS

o Controls database redundancy: It can control data redundancy because it stores all the data in one

single database file and that recorded data is placed in the database.

o Data sharing: In DBMS, the authorized users of an organization can share the data among multiple

users.

o Easily Maintenance: It can be easily maintainable due to the centralized nature of the database system.

o Reduce time: It reduces development time and maintenance need.

o Backup: It provides backup and recovery subsystems which create automatic backup of data

from hardware and software failures and restores the data if required.

o multiple user interface: It provides different types of user interfaces like graphical user interfaces,

application program interfaces

https://www.javatpoint.com/hardware
https://www.javatpoint.com/software

Prepard By
D Susmita Page 4

Disadvantages of DBMS

o Cost of Hardware and Software: It requires a high speed of data processor and large memory size to

run DBMS software.

o Size: It occupies a large space of disks and large memory to run them efficiently.

o Complexity: Database system creates additional complexity and requirements.

o Higher impact of failure: Failure is highly impacted the database because in most of the organization,

all the data stored in a single database and if the database is damaged due to electric failure or database

corruption then the data may be lost forever.

File System Approach
o File based systems were an early attempt to computerize the manual system. It is also called a traditional

based approach in which a decentralized approach was taken where each department stored and

controlled its own data with the help of a data processing specialist. The main role of a data processing

specialist was to create the necessary computer file structures, and also manage the data within

structures and design some application programs that create reports based on file data.

Prepard By
D Susmita Page 5

In the above figure:

Consider an example of a student's file system. The student file will contain information regarding the

student (i.e. roll no, student name, course etc.). Similarly, we have a subject file that contains information

about the subject and the result file which contains the information regarding the result.

Some fields are duplicated in more than one file, which leads to data redundancy. So to overcome this

problem, we need to create a centralized system, i.e. DBMS approach.

DBMS:

A database approach is a well-organized collection of data that are related in a meaningful way which can be

accessed by different users but stored only once in a system. The various operations performed by the DBMS

system are: Insertion, deletion, selection, sorting etc.

Prepard By
D Susmita Page 6

In the above figure,

In the above figure, duplication of data is reduced due to centralization of data.

There are the following differences between DBMS and File systems:

Basis DBMS Approach File System Approach

Meaning DBMS is a collection of data. In DBMS, the user

is not required to write the procedures.

The file system is a collection of data.

In this system, the user has to write

the procedures for managing the

database.

Sharing of data Due to the centralized approach, data sharing is

easy.

Data is distributed in many files, and it

may be of different formats, so it isn't

easy to share data.

Data Abstraction DBMS gives an abstract view of data that hides

the details.

The file system provides the detail of

the data representation and storage of

data.

Security and DBMS provides a good protection mechanism. It isn't easy to protect a file under the

Prepard By
D Susmita Page 7

Protection file system.

Recovery

Mechanism

DBMS provides a crash recovery mechanism, i.e.,

DBMS protects the user from system failure.

The file system doesn't have a crash

mechanism, i.e., if the system crashes

while entering some data, then the

content of the file will be lost.

Manipulation

Techniques

DBMS contains a wide variety of sophisticated

techniques to store and retrieve the data.

The file system can't efficiently store

and retrieve the data.

Concurrency

Problems

DBMS takes care of Concurrent access of data

using some form of locking.

In the File system, concurrent access

has many problems like redirecting

the file while deleting some

information or updating some

information.

Where to use Database approach used in large systems which

interrelate many files.

File system approach used in large

systems which interrelate many files.

Cost The database system is expensive to design. The file system approach is cheaper to

design.

Data Redundancy

and Inconsistency

Due to the centralization of the database, the

problems of data redundancy and inconsistency

are controlled.

In this, the files and application

programs are created by different

programmers so that there exists a lot

of duplication of data which may lead

to inconsistency.

Structure The database structure is complex to design. The file system approach has a simple

structure.

Data

Independence

In this system, Data Independence exists, and it

can be of two types.

o Logical Data Independence

o Physical Data Independence

In the File system approach, there

exists no Data Independence.

Integrity

Constraints

Integrity Constraints are easy to apply. Integrity Constraints are difficult to

implement in file system.

Prepard By
D Susmita Page 8

Data Models In the database approach, 3 types of data

models exist:

o Hierarchal data models

o Network data models

o Relational data models

In the file system approach, there is no

concept of data models exists.

Flexibility Changes are often a necessity to the content of

the data stored in any system, and these

changes are more easily with a database

approach.

The flexibility of the system is less as

compared to the DBMS approach.

Examples Oracle, SQL Server, Sybase etc. Cobol, C++ etc.

DBMS Architecture
o The DBMS design depends upon its architecture. The basic client/server architecture is used to deal with a large

number of PCs, web servers, database servers and other components that are connected with networks.

o The client/server architecture consists of many PCs and a workstation which are connected via the network.

o DBMS architecture depends upon how users are connected to the database to get their request done.

Types of DBMS Architecture

Prepard By
D Susmita Page 9

Database architecture can be seen as a single tier or multi-tier. But logically, database architecture is of two

types like: 2-tier architecture and 3-tier architecture.

1-Tier Architecture

o In this architecture, the database is directly available to the user. It means the user can directly sit on the DBMS and

uses it.

o Any changes done here will directly be done on the database itself. It doesn't provide a handy tool for end users.

o The 1-Tier architecture is used for development of the local application, where programmers can directly

communicate with the database for the quick response.

2-Tier Architecture

o The 2-Tier architecture is same as basic client-server. In the two-tier architecture, applications on the client end can

directly communicate with the database at the server side. For this interaction, API's like: ODBC, JDBC are used.

o The user interfaces and application programs are run on the client-side.

o The server side is responsible to provide the functionalities like: query processing and transaction management.

Prepard By
D Susmita Page 10

o To communicate with the DBMS, client-side application establishes a connection with the server side.

Fig: 2-tier Architecture

3-Tier Architecture

o The 3-Tier architecture contains another layer between the client and server. In this architecture, client can't directly

communicate with the server.

o The application on the client-end interacts with an application server which further communicates with the

database system.

o End user has no idea about the existence of the database beyond the application server. The database also has no

idea about any other user beyond the application.

o The 3-Tier architecture is used in case of large web application.

Prepard By
D Susmita Page 11

Fig: 3-tier Architecture

Prepard By
D Susmita Page 12

Database users are categorized based up on their interaction with the database. These are seven
types of database users in DBMS.

1. Database Administrator (DBA) : Database Administrator (DBA) is a person/team who defines
the schema and also controls the 3 levels of database. The DBA will then create a new account id
and password for the user if he/she need to access the database. DBA is also responsible for
providing security to the database and he allows only the authorized users to access/modify the
data base. DBA is responsible for the problems such as security breaches and poor system
response time.
 DBA also monitors the recovery and backup and provide technical support.
 The DBA has a DBA account in the DBMS which called a system or super user account.
 DBA repairs damage caused due to hardware and/or software failures.
 DBA is the one having privileges to perform DCL (Data Control Language) operations such as

GRANT and REVOKE, to allow/restrict a particular user from accessing the database.
2. Naive / Parametric End Users : Parametric End Users are the unsophisticated who don’t have

any DBMS knowledge but they frequently use the database applications in their daily life to get the
desired results. For examples, Railway’s ticket booking users are naive users. Clerks in any bank
is a naive user because they don’t have any DBMS knowledge but they still use the database and
perform their given task.
3. System Analyst :

System Analyst is a user who analyzes the requirements of parametric end users. They check
whether all the requirements of end users are satisfied.

4. Sophisticated Users : Sophisticated users can be engineers, scientists, business analyst, who

are familiar with the database. They can develop their own database applications according to
their requirement. They don’t write the program code but they interact the database by writing
SQL queries directly through the query processor.

5. Database Designers : Data Base Designers are the users who design the structure of

database which includes tables, indexes, views, triggers, stored procedures and constraints
which are usually enforced before the database is created or populated with data. He/she
controls what data must be stored and how the data items to be related. It is responsibility of
Database Designers to understand the requirements of different user groups and then create a
design which satisfies the need of all the user groups.

6. Application Programmers : Application Programmers also referred as System Analysts or
simply Software Engineers, are the back-end programmers who writes the code for the
application programs. They are the computer professionals. These programs could be written
in Programming languages such as Visual Basic, Developer, C, FORTRAN, COBOL etc.
Application programmers design, debug, test, and maintain set of programs called “canned
transactions” for the Naive (parametric) users in order to interact with database.

7. Casual Users / Temporary Users : Casual Users are the users who occasionally use/access
the database but each time when they access the database they require the new information,
for example, Middle or higher level manager.

Prepard By
D Susmita Page 13

Categories of End Users in DBMS
End users are basically those people whose jobs require access to the database for querying,
updating, and generating reports. The database primarily exists for their use. There are several

categories of end-users these are as follows:

1. Casual End Users: These are the users who occasionally access the database but they require
different information each time. They use a sophisticated database query language basically to
specify their request and are typically middle or level managers or other occasional browsers. These
users learn very few facilities that they may use repeatedly from the multiple facilities provided by
DBMS to access it.
2. Naive or parametric end users: These are the users who basically make up a sizeable portion of
database end-users. The main job function revolves basically around constantly querying and
updating the database for this we basically use a standard type of query known as the canned
transaction that has been programmed and tested. These users need to learn very little about the

facilities provided by the DBMS they basically have to understand the users’ interfaces of the
standard transaction designed and implemented for their use. The following tasks are basically
performed by Naive end-users:
1. The person who is working in the bank will basically tell us the account balance and post-

withdrawal and deposits.
2. Reservation clerks for airlines, railways, hotels and car rental companies basically check

availability for a given request and make the reservation.
3. Clerks who are working at receiving end for shipping companies enter the package identifies via

barcodes and descriptive information through buttons to update a central database of received
and in-transit packages.

3. Application programmers: The application programmers write different application programs and
are responsible for developing the user interface. The application programmers are free to develop
the user interfaces in any preferred language such as C/C++/Java etc.
4. Sophisticated end users: These users basically include engineers, scientists, business analytics, and others

who thoroughly familiarize themselves with the facilities of the DBMS in order to implement their application to

meet their complex requirements. These users try to learn most of the DBMS facilities in order to achieve their

complex requirements.

5. Standalone users: These are those users whose job is basically to maintain personal databases by using a

ready-made program package that provides easy-to-use menu-based or graphics-based interfaces, An example is

the user of a tax package that basically stores a variety of personal financial data for tax purposes. These users

become very proficient in using a specific software package.

6. Specialized users: The special users are responsible for writing specialized database-related programs and also

have the task of creating the actual database as well as implementing technical controls needed to enforce policies

and decisions.
We can categorize them into seven categories as follows:

 Database Administrators (DBA)

 Database Designers.

Prepard By
D Susmita Page 14

 System Analysts.

 Application Programmers.

 Naive Users / Parametric Users.

 Sophisticated Users.

 Casual Users / Temporary Users.

ER (Entity Relationship) Diagram in DBMS

o ER model stands for an Entity-Relationship model. It is a high-level data model. This model is used to

define the data elements and relationship for a specified system.

o It develops a conceptual design for the database. It also develops a very simple and easy to design view

of data.

o In ER modeling, the database structure is portrayed as a diagram called an entity-relationship diagram.

For example, Suppose we design a school database. In this database, the student will be an entity with

attributes like address, name, id, age, etc. The address can be another entity with attributes like city, street name,

pin code, etc and there will be a relationship between them.

Prepard By
D Susmita Page 15

Component of ER Diagram

Prepard By
D Susmita Page 16

1. Entity:

An entity may be any object, class, person or place. In the ER diagram, an entity can be represented as

rectangles.

Consider an organization as an example- manager, product, employee, department etc. can be taken as an

entity.

Prepard By
D Susmita Page 17

a. Weak Entity

An entity that depends on another entity called a weak entity. The weak entity doesn't contain any key attribute

of its own. The weak entity is represented by a double rectangle.

2. Attribute

The attribute is used to describe the property of an entity. Eclipse is used to represent an attribute.

For example, id, age, contact number, name, etc. can be attributes of a student.

Prepard By
D Susmita Page 18

a. Key Attribute

The key attribute is used to represent the main characteristics of an entity. It represents a primary key. The key

attribute is represented by an ellipse with the text underlined.

b. Composite Attribute

An attribute that composed of many other attributes is known as a composite attribute. The composite attribute

is represented by an ellipse, and those ellipses are connected with an ellipse.

Prepard By
D Susmita Page 19

c. Multivalued Attribute

An attribute can have more than one value. These attributes are known as a multivalued attribute. The double

oval is used to represent multivalued attribute.

For example, a student can have more than one phone number.

d. Derived Attribute

An attribute that can be derived from other attribute is known as a derived attribute. It can be represented by a

dashed ellipse.

For example, A person's age changes over time and can be derived from another attribute like Date of birth.

3. Relationship

Prepard By
D Susmita Page 20

A relationship is used to describe the relation between entities. Diamond or rhombus is used to represent the

relationship.

Types of relationship are as follows:

a. One-to-One Relationship

When only one instance of the entity on the left, and more than one instance of an entity on the right associates

with the relationship then this is known as a one-to-many relationship.

For example, Scientist can invent many inventions, but the invention is done by the only specific scientist.

c. Many-to-one relationship

When more than one instance of the entity on the left, and only one instance of an entity on the right associates

with the relationship then it is known as a many-to-one relationship.

For example, Student enrolls for only one course, but a course can have many students.

Prepard By
D Susmita Page 21

d. Many-to-many relationship

When more than one instance of the entity on the left, and more than one instance of an entity on the right

associates with the relationship then it is known as a many-to-many relationship.

For example, Employee can assign by many projects and project can have many employees.

Notation of ER diagram

Database can be represented using the notations. In ER diagram, many notations are used to express the

cardinality. These notations are as follows:

Prepard By
D Susmita Page 22

Fig: Notations of ER diagram

Mapping Constraints

o A mapping constraint is a data constraint that expresses the number of entities to which another entity

can be related via a relationship set.

o It is most useful in describing the relationship sets that involve more than two entity sets.

o For binary relationship set R on an entity set A and B, there are four possible mapping cardinalities. These

are as follows:

1. One to one (1:1)

2. One to many (1:M)

3. Many to one (M:1)

4. Many to many (M:M)

One-to-one

Prepard By
D Susmita Page 23

In one-to-one mapping, an entity in E1 is associated with at most one entity in E2, and an entity in E2 is

associated with at most one entity in E1.

One-to-many

In one-to-many mapping, an entity in E1 is associated with any number of entities in E2, and an entity in E2 is

associated with at most one entity in E1.

Many-to-one

In one-to-many mapping, an entity in E1 is associated with at most one entity in E2, and an entity in E2 is

associated with any number of entities in E1.

Prepard By
D Susmita Page 24

Many-to-many

In many-to-many mapping, an entity in E1 is associated with any number of entities in E2, and an entity in E2 is

associated with any number of entities in E1.

Reduction of ER diagram to Table

The database can be represented using the notations, and these notations can be reduced to a collection of

tables.

In the database, every entity set or relationship set can be represented in tabular form.

The ER diagram is given below:

Prepard By
D Susmita Page 25

There are some points for converting the ER diagram to the table:

o Entity type becomes a table.

In the given ER diagram, LECTURE, STUDENT, SUBJECT and COURSE forms individual tables.

o All single-valued attribute becomes a column for the table.

In the STUDENT entity, STUDENT_NAME and STUDENT_ID form the column of STUDENT table. Similarly,

COURSE_NAME and COURSE_ID form the column of COURSE table and so on.

o A key attribute of the entity type represented by the primary key.

In the given ER diagram, COURSE_ID, STUDENT_ID, SUBJECT_ID, and LECTURE_ID are the key attribute of the

entity.

o The multivalued attribute is represented by a separate table.

Prepard By
D Susmita Page 26

In the student table, a hobby is a multivalued attribute. So it is not possible to represent multiple values in a

single column of STUDENT table. Hence we create a table STUD_HOBBY with column name STUDENT_ID and

HOBBY. Using both the column, we create a composite key.

o Composite attribute represented by components.

In the given ER diagram, student address is a composite attribute. It contains CITY, PIN, DOOR#, STREET, and

STATE. In the STUDENT table, these attributes can merge as an individual column.

o Derived attributes are not considered in the table.

In the STUDENT table, Age is the derived attribute. It can be calculated at any point of time by calculating the

difference between current date and Date of Birth.

Using these rules, you can convert the ER diagram to tables and columns and assign the mapping between the

tables. Table structure for the given ER diagram is as below:

Figure: Table structure

Prepard By
D Susmita Page 27

Relationship of higher degree

The degree of relationship can be defined as the number of occurrences in one entity that is associated with the

number of occurrences in another entity.

There is the three degree of relationship:

1. One-to-one (1:1)

2. One-to-many (1:M)

3. Many-to-many (M:N)

1. One-to-one

o In a one-to-one relationship, one occurrence of an entity relates to only one occurrence in another entity.

o A one-to-one relationship rarely exists in practice.

o For example: if an employee is allocated a company car then that car can only be driven by that employee.

o Therefore, employee and company car have a one-to-one relationship.

2. One-to-many

o In a one-to-many relationship, one occurrence in an entity relates to many occurrences in another entity.

o For example: An employee works in one department, but a department has many employees.

o Therefore, department and employee have a one-to-many relationship.

3. Many-to-many

o In a many-to-many relationship, many occurrences in an entity relate to many occurrences in another entity.

Prepard By
D Susmita Page 28

o Same as a one-to-one relationship, the many-to-many relationship rarely exists in practice.

o For example: At the same time, an employee can work on several projects, and a project has a team of many

employees.

o Therefore, employee and project have a many-to-many relationship.

Functional Dependency

The functional dependency is a relationship that exists between two attributes. It typically exists between the

primary key and non-key attribute within a table.

1. X → Y

The left side of FD is known as a determinant, the right side of the production is known as a dependent.

For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if we know the

Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:

1. Emp_Id → Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional dependency

Prepard By
D Susmita Page 29

1. Trivial functional dependency

o A → B has trivial functional dependency if B is a subset of A.

o The following dependencies are also trivial like: A → A, B → B

Example:

1. Consider a table with two columns Employee_Id and Employee_Name.

2. {Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as

3. Employee_Id is a subset of {Employee_Id, Employee_Name}.

4. Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial dependencies too.

2. Non-trivial functional dependency

o A → B has a non-trivial functional dependency if B is not a subset of A.

o When A intersection B is NULL, then A → B is called as complete non-trivial.

Example:

1. ID → Name,

2. Name → DOB

Prepard By
D Susmita Page 30

 Keys

o Keys play an important role in the relational database.

o It is used to uniquely identify any record or row of data from the table. It is also used to establish and

identify relationships between tables.

For example, ID is used as a key in the Student table because it is unique for each student. In the PERSON

table, passport_number, license_number, SSN are keys since they are unique for each person.

Prepard By
D Susmita Page 31

Types of keys:

1. Primary key

o It is the first key used to identify one and only one instance of an entity uniquely. An entity can contain

multiple keys, as we saw in the PERSON table. The key which is most suitable from those lists becomes a

primary key.

o In the EMPLOYEE table, ID can be the primary key since it is unique for each employee. In the EMPLOYEE

table, we can even select License_Number and Passport_Number as primary keys since they are also

unique.

Prepard By
D Susmita Page 32

o For each entity, the primary key selection is based on requirements and developers.

2. Candidate key

o A candidate key is an attribute or set of attributes that can uniquely identify a tuple.

o Except for the primary key, the remaining attributes are considered a candidate key. The candidate keys

are as strong as the primary key.

For example: In the EMPLOYEE table, id is best suited for the primary key. The rest of the attributes, like SSN,

Passport_Number, License_Number, etc., are considered a candidate key.

3. Super Key

Super key is an attribute set that can uniquely identify a tuple. A super key is a superset of a candidate key.

Prepard By
D Susmita Page 33

For example: In the above EMPLOYEE table, for(EMPLOEE_ID, EMPLOYEE_NAME), the name of two employees

can be the same, but their EMPLYEE_ID can't be the same. Hence, this combination can also be a key.

The super key would be EMPLOYEE-ID (EMPLOYEE_ID, EMPLOYEE-NAME), etc.

4. Foreign key

o Foreign keys are the column of the table used to point to the primary key of another table.

o Every employee works in a specific department in a company, and employee and department are two

different entities. So we can't store the department's information in the employee table. That's why we

link these two tables through the primary key of one table.

o We add the primary key of the DEPARTMENT table, Department_Id, as a new attribute in the EMPLOYEE

table.

o In the EMPLOYEE table, Department_Id is the foreign key, and both the tables are related.

5. Alternate key

There may be one or more attributes or a combination of attributes that uniquely identify each tuple in a

relation. These attributes or combinations of the attributes are called the candidate keys. One key is chosen as

Prepard By
D Susmita Page 34

the primary key from these candidate keys, and the remaining candidate key, if it exists, is termed the alternate

key. In other words, the total number of the alternate keys is the total number of candidate keys minus the

primary key. The alternate key may or may not exist. If there is only one candidate key in a relation, it does not

have an alternate key.

For example, employee relation has two attributes, Employee_Id and PAN_No, that act as candidate keys. In this

relation, Employee_Id is chosen as the primary key, so the other candidate key, PAN_No, acts as the Alternate

key.

6. Composite key

Whenever a primary key consists of more than one attribute, it is known as a composite key. This key is also

known as Concatenated Key.

For example, in employee relations, we assume that an employee may be assigned multiple roles, and an

employee may work on multiple projects simultaneously. So the primary key will be composed of all three

attributes, namely Emp_ID, Emp_role, and Proj_ID in combination. So these attributes act as a composite key

since the primary key comprises more than one attribute.

Prepard By
D Susmita Page 35

7. Artificial key

The key created using arbitrarily assigned data are known as artificial keys. These keys are created when a

primary key is large and complex and has no relationship with many other relations. The data values of the

artificial keys are usually numbered in a serial order.

For example, the primary key, which is composed of Emp_ID, Emp_role, and Proj_ID, is large in employee

relations. So it would be better to add a new virtual attribute to identify each tuple in the relation uniquely.

What does data redundancy mean?

Data redundancy is when multiple copies of the same information are stored in more than one place at a time.

Redundancy in DBMS is having several copies of the same data in the database.
Redundancy in DBMS occurs when the database is not normalized. Redundancy
causes insertion, deletion, and updation anomalies. Redundancy can be avoided by

normalizing the database, maintaining master data,What is Anomaly?

Prepard By
D Susmita Page 36

Anomaly means inconsistency in the pattern from the normal form. In Database Management System (DBMS),

anomaly means the inconsistency occurred in the relational table during the operations performed on the relational

table.

There can be various reasons for anomalies to occur in the database. For example, if there is a lot of redundant data

present in our database then DBMS anomalies can occur. If a table is constructed in a very poor manner then there is

a chance of database anomaly. Due to database anomalies, the integrity of the database suffers.

The other reason for the database anomalies is that all the data is stored in a single table. So, to remove the

anomalies of the database, normalization is the process which is done where the splitting of the table and joining of

the table (different types of join) occurs.

We will see the anomalies present in a table by the different examples:

Example 1:

Worker_id Worker_name Worker_dept Worker_address

65 Ramesh ECT001 Jaipur

65 Ramesh ECT002 Jaipur

73 Amit ECT002 Delhi

76 Vikas ECT501 Pune

76 Vikas ECT502 Pune

79 Rajesh ECT669 Mumbai

In the above table, we have four columns which describe the details about the workers like their name, address,

department and their id. The above table is not normalized, and there is definitely a chance of anomalies present in

the table.

There can be three types of an anomaly in the database:

Prepard By
D Susmita Page 37

Updation / Update Anomaly

When we update some rows in the table, and if it leads to the inconsistency of the table then this anomaly occurs.

This type of anomaly is known as an updation anomaly. In the above table, if we want to update the address of

Ramesh then we will have to update all the rows where Ramesh is present. If during the update we miss any single

row, then there will be two addresses of Ramesh, which will lead to inconsistent and wrong databases.

Insertion Anomaly

If there is a new row inserted in the table and it creates the inconsistency in the table then it is called the insertion

anomaly. For example, if in the above table, we create a new row of a worker, and if it is not allocated to any

department then we cannot insert it in the table so, it will create an insertion anomaly.

Deletion Anomaly

If we delete some rows from the table and if any other information or data which is required is also deleted from the

database, this is called the deletion anomaly in the database. For example, in the above table, if we want to delete

the department number ECT669 then the details of Rajesh will also be deleted since Rajesh's details are dependent

on the row of ECT669. So, there will be deletion anomalies in the table.

To remove this type of anomalies, we will normalize the table or split the table or join the tables. There can be

various normalized forms of a table like 1NF, 2NF, 3NF, BCNF etc. we will apply the different normalization schemes

according to the current form of the table.

Example 2:

Stu_id Stu_name Stu_branch Stu_club

2018nk01 Shivani Computer science literature

2018nk01 Shivani Computer science dancing

2018nk02 Ayush Electronics Videography

2018nk03 Mansi Electrical dancing

Prepard By
D Susmita Page 38

2018nk03 Mansi Electrical singing

2018nk04 Gopal Mechanical Photography

In the above table, we have listed students with their name, id, branch and their respective clubs.

Updation / Update Anomaly

In the above table, if Shivani changes her branch from Computer Science to Electronics, then we will have to update

all the rows. If we miss any row, then Shivani will have more than one branch, which will create the update anomaly in

the table.

Insertion Anomaly

If we add a new row for student Ankit who is not a part of any club, we cannot insert the row into the table as we

cannot insert null in the column of stu_club. This is called insertion anomaly.

Deletion Anomaly

If we remove the photography club from the college, then we will have to delete its row from the table. But it will

also delete the table of Gopal and his details. So, this is called deletion anomaly and it will make the database

inconsistent.

What do you mean by data redundancy?

Data redundancy occurs when the same piece of data exists in multiple places, whereas data

inconsistency is when the same data exists in different formats in multiple tables. Unfortunately, data
redundancy can cause data inconsistency, which can provide a company with unreliable and/or meaningless
information.

What is data redundancy with example?

A common example of data redundancy is when a name and address are both present in different columns
within a table. If the link between these data points is defined in every single new database entry it would lead
to unnecessary duplication across the entire table

Prepard By
D Susmita Page 39

Normalization

If a database design is not perfect, it may contain anomalies, which are like a bad dream for any database
administrator. Managing a database with anomalies is next to impossible.

 Update anomalies − If data items are scattered and are not linked to each other properly, then it could lead to
strange situations. For example, when we try to update one data item having its copies scattered over several
places, a few instances get updated properly while a few others are left with old values. Such instances leave
the database in an inconsistent state.

 Deletion anomalies − We tried to delete a record, but parts of it was left undeleted because of unawareness,
the data is also saved somewhere else.

 Insert anomalies − We tried to insert data in a record that does not exist at all.

Normalization is a method to remove all these anomalies and bring the database to a consistent state.

First Normal Form

First Normal Form is defined in the definition of relations (tables) itself. This rule defines that all the attributes in a
relation must have atomic domains. The values in an atomic domain are indivisible units.

We re-arrange the relation (table) as below, to convert it to First Normal Form.

Each attribute must contain only a single value from its pre-defined domain.

Second Normal Form

Before we learn about the second normal form, we need to understand the following −

 Prime attribute − An attribute, which is a part of the candidate-key, is known as a prime attribute.

Prepard By
D Susmita Page 40

 Non-prime attribute − An attribute, which is not a part of the prime-key, is said to be a non-prime attribute.

 If we follow second normal form, then every non-prime attribute should be fully functionally dependent on
prime key attribute. That is, if X → A holds, then there should not be any proper subset Y of X, for which Y →
A also holds true.

 We see here in Student_Project relation that the prime key attributes are Stu_ID and Proj_ID. According to

the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent upon both and not on any of
the prime key attribute individually. But we find that Stu_Name can be identified by Stu_ID and Proj_Name
can be identified by Proj_ID independently. This is called partial dependency, which is not

 allowed in Second Normal Form.

 We broke the relation in two as depicted in the above picture. So there exists no partial dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal form and the following must satisfy −

 No non-prime attribute is transitively dependent on prime key attribute.

 For any non-trivial functional dependency, X → A, then either −

o X is a superkey or,

o A is prime attribute.

Prepard By
D Susmita Page 41

We find that in the above Student_detail relation, Stu_ID is the key and only prime key attribute. We find that City
can be identified by Stu_ID as well as Zip itself. Neither Zip is a superkey nor is City a prime attribute. Additionally,
Stu_ID → Zip → City, so there exists transitive dependency

To bring this relation into third normal form, we break the relation into two relations as follows −

Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on strict terms. BCNF states that −

 For any non-trivial functional dependency, X → A, X must be a super-key.

In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is the super-key in the relation
ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City

Which confirms that both the relations are in BCNF.

Prepard By
D Susmita Page 42

Three schema Architecture

o The three schema architecture is also called ANSI/SPARC architecture or three-level architecture.

o This framework is used to describe the structure of a specific database system.

o The three schema architecture is also used to separate the user applications and physical database.

o The three schema architecture contains three-levels. It breaks the database down into three different

categories.

The three-schema architecture is as follows:

In the above diagram:

o It shows the DBMS architecture.

o Mapping is used to transform the request and response between various database levels of architecture.

Prepard By
D Susmita Page 43

o Mapping is not good for small DBMS because it takes more time.

o In External / Conceptual mapping, it is necessary to transform the request from external level to

conceptual schema.

o In Conceptual / Internal mapping, DBMS transform the request from the conceptual to internal level.

Objectives of Three schema Architecture

The main objective of three level architecture is to enable multiple users to access the same data with a

personalized view while storing the underlying data only once. Thus it separates the user's view from the

physical structure of the database. This separation is desirable for the following reasons:

o Different users need different views of the same data.

o The approach in which a particular user needs to see the data may change over time.

o The users of the database should not worry about the physical implementation and internal workings of

the database such as data compression and encryption techniques, hashing, optimization of the internal

structures etc.

o All users should be able to access the same data according to their requirements.

o DBA should be able to change the conceptual structure of the database without affecting the user's

o Internal structure of the database should be unaffected by changes to physical aspects of the storage.

1. Internal Level

o The internal level has an internal schema which describes the physical storage structure of the database.

o The internal schema is also known as a physical schema.

o It uses the physical data model. It is used to define that how the data will be stored in a block.

o The physical level is used to describe complex low-level data structures in detail.

Prepard By
D Susmita Page 44

The internal level is generally is concerned with the following activities:

o Storage space allocations.

For Example: B-Trees, Hashing etc.

o Access paths.

For Example: Specification of primary and secondary keys, indexes, pointers and sequencing.

o Data compression and encryption techniques.

o Optimization of internal structures.

o Representation of stored fields.

2. Conceptual Level

o The conceptual schema describes the design of a database at the conceptual level. Conceptual level is

also known as logical level.

o The conceptual schema describes the structure of the whole database.

o The conceptual level describes what data are to be stored in the database and also describes what

relationship exists among those data.

o In the conceptual level, internal details such as an implementation of the data structure are hidden.

o Programmers and database administrators work at this level.

3. External Level

Prepard By
D Susmita Page 45

o At the external level, a database contains several schemas that sometimes called as subschema. The

subschema is used to describe the different view of the database.

o An external schema is also known as view schema.

o Each view schema describes the database part that a particular user group is interested and hides the

remaining database from that user group.

o The view schema describes the end user interaction with database systems.

Mapping between Views

The three levels of DBMS architecture don't exist independently of each other. There must be correspondence

between the three levels i.e. how they actually correspond with each other. DBMS is responsible for

correspondence between the three types of schema. This correspondence is called Mapping.

There are basically two types of mapping in the database architecture:

o Conceptual/ Internal Mapping

o External / Conceptual Mapping

Conceptual/ Internal Mapping

The Conceptual/ Internal Mapping lies between the conceptual level and the internal level. Its role is to define

the correspondence between the records and fields of the conceptual level and files and data structures of the

internal level.

External/ Conceptual Mapping

The external/Conceptual Mapping lies between the external level and the Conceptual level. Its role is to define

the correspondence between a particular external and the conceptual view.

Data Models

Data Model is the modeling of the data description, data semantics, and consistency constraints of the data. It

provides the conceptual tools for describing the design of a database at each level of data abstraction.

Therefore, there are following four data models used for understanding the structure of the database:

Prepard By
D Susmita Page 46

1) Relational Data Model: This type of model designs the data in the form of rows and columns within a table.

Thus, a relational model uses tables for representing data and in-between relationships. Tables are also called

relations. This model was initially described by Edgar F. Codd, in 1969. The relational data model is the widely

used model which is primarily used by commercial data processing applications.

2) Entity-Relationship Data Model: An ER model is the logical representation of data as objects and

relationships among them. These objects are known as entities, and relationship is an association among these

entities. This model was designed by Peter Chen and published in 1976 papers. It was widely used in database

designing. A set of attributes describe the entities. For example, student_name, student_id describes the

'student' entity. A set of the same type of entities is known as an 'Entity set', and the set of the same type of

relationships is known as 'relationship set'.

3) Object-based Data Model: An extension of the ER model with notions of functions, encapsulation, and

object identity, as well. This model supports a rich type system that includes structured and collection types.

Thus, in 1980s, various database systems following the object-oriented approach were developed. Here, the

objects are nothing but the data carrying its properties.

4) Semistructured Data Model: This type of data model is different from the other three data models (explained above).

The semistructured data model allows the data specifications at places where the individual data items of the same type

may have different attributes sets. The Extensible Markup Language, also known as XML, is widely used for representing

the semistructured data. Although XML was initially designed for including the markup information to the text document,

it gains importance because of its application in the exchange of data.

Prepard By
D Susmita Page 47

Data model Schema and Instance

o The data which is stored in the database at a particular moment of time is called an instance of the

database.

o The overall design of a database is called schema.

o A database schema is the skeleton structure of the database. It represents the logical view of the entire

database.

o A schema contains schema objects like table, foreign key, primary key, views, columns, data types, stored

procedure, etc.

o A database schema can be represented by using the visual diagram. That diagram shows the database

objects and relationship with each other.

o A database schema is designed by the database designers to help programmers whose software will

interact with the database. The process of database creation is called data modeling.

A schema diagram can display only some aspects of a schema like the name of record type, data type, and

constraints. Other aspects can't be specified through the schema diagram. For example, the given figure neither

show the data type of each data item nor the relationship among various files.

In the database, actual data changes quite frequently. For example, in the given figure, the database changes

whenever we add a new grade or add a student. The data at a particular moment of time is called the instance

of the database.

Data Independence

o Data independence can be explained using the three-schema architecture.

o Data independence refers characteristic of being able to modify the schema at one level of the database

system without altering the schema at the next higher level.

There are two types of data independence:

1. Logical Data Independence

Prepard By
D Susmita Page 48

o Logical data independence refers characteristic of being able to change the conceptual schema without

having to change the external schema.

o Logical data independence is used to separate the external level from the conceptual view.

o If we do any changes in the conceptual view of the data, then the user view of the data would not be

affected.

o Logical data independence occurs at the user interface level.

2. Physical Data Independence

o Physical data independence can be defined as the capacity to change the internal schema without having

to change the conceptual schema.

o If we do any changes in the storage size of the database system server, then the Conceptual structure of

the database will not be affected.

o Physical data independence is used to separate conceptual levels from the internal levels.

o Physical data independence occurs at the logical interface level.

Prepard By
D Susmita Page 49

Fig: Data Independence

Prepard By
D Susmita Page 50

Database Languages in DBMS

o A DBMS has appropriate languages and interfaces to express database queries and updates.

o Database languages can be used to read, store and update the data in the database.

Types of Database Languages

Prepard By
D Susmita Page 51

1. Data Definition Language (DDL)

o DDL stands for Data Definition Language. It is used to define database structure or pattern.

o It is used to create schema, tables, indexes, constraints, etc. in the database.

o Using the DDL statements, you can create the skeleton of the database.

o Data definition language is used to store the information of metadata like the number of tables and

schemas, their names, indexes, columns in each table, constraints, etc.

Here are some tasks that come under DDL:

o Create: It is used to create objects in the database.

o Alter: It is used to alter the structure of the database.

o Drop: It is used to delete objects from the database.

o Truncate: It is used to remove all records from a table.

o Rename: It is used to rename an object.

o Comment: It is used to comment on the data dictionary.

Prepard By
D Susmita Page 52

These commands are used to update the database schema that's why they come under Data definition

language.

2. Data Manipulation Language (DML)

DML stands for Data Manipulation Language. It is used for accessing and manipulating data in a database. It

handles user requests.

Here are some tasks that come under DML:

o Select: It is used to retrieve data from a database.

o Insert: It is used to insert data into a table.

o Update: It is used to update existing data within a table.

o Delete: It is used to delete all records from a table.

o Merge: It performs UPSERT operation, i.e., insert or update operations.

o Call: It is used to call a structured query language or a Java subprogram.

o Explain Plan: It has the parameter of explaining data.

o Lock Table: It controls concurrency.

3. Data Control Language (DCL)

o DCL stands for Data Control Language. It is used to retrieve the stored or saved data.

o The DCL execution is transactional. It also has rollback parameters.

(But in Oracle database, the execution of data control language does not have the feature of rolling

back.)

Here are some tasks that come under DCL:

o Grant: It is used to give user access privileges to a database.

o Revoke: It is used to take back permissions from the user.

There are the following operations which have the authorization of Revoke:

CONNECT, INSERT, USAGE, EXECUTE, DELETE, UPDATE and SELECT.

Prepard By
D Susmita Page 53

4. Transaction Control Language (TCL)

TCL is used to run the changes made by the DML statement. TCL can be grouped into a logical transaction.

Here are some tasks that come under TCL:

o Commit: It is used to save the transaction on the database.

o Rollback: It is used to restore the database to original since the last Commit.

ACID Properties in DBMS
o DBMS is the management of data that should remain integrated when any changes are done in it. It is

because if the integrity of the data is affected, whole data will get disturbed and corrupted. Therefore, to

maintain the integrity of the data, there are four properties described in the database management

system, which are known as the ACID properties. The ACID properties are meant for the transaction that

goes through a different group of tasks, and there we come to see the role of the ACID properties.

o In this section, we will learn and understand about the ACID properties. We will learn what these

properties stand for and what does each property is used for. We will also understand the ACID

properties with the help of some examples.

ACID Properties
o The expansion of the term ACID defines for:

1) Atomicity

o The term atomicity defines that the data remains atomic. It means if any operation is performed on the

data, either it should be performed or executed completely or should not be executed at all. It further

means that the operation should not break in between or execute partially. In the case of executing

operations on the transaction, the operation should be completely executed and not partially.

Prepard By
D Susmita Page 54

o Example: If Remo has account A having $30 in his account from which he wishes to send $10 to Sheero's

account, which is B. In account B, a sum of $ 100 is already present. When $10 will be transferred to

account B, the sum will become $110. Now, there will be two operations that will take place. One is the

amount of $10 that Remo wants to transfer will be debited from his account A, and the same amount will

get credited to account B, i.e., into Sheero's account. Now, what happens - the first operation of debit

executes successfully, but the credit operation, however, fails. Thus, in Remo's account A, the value

becomes $20, and to that of Sheero's account, it remains $100 as it was previously present.

o In the above diagram, it can be seen that after crediting $10, the amount is still $100 in account B. So, it is

not an atomic transaction.

o The below image shows that both debit and credit operations are done successfully. Thus the transaction

is atomic.

Prepard By
D Susmita Page 55

o Thus, when the amount loses atomicity, then in the bank systems, this becomes a huge issue, and so the

atomicity is the main focus in the bank systems.

2) Consistency
o The word consistency means that the value should remain preserved always. In DBMS, the integrity of

the data should be maintained, which means if a change in the database is made, it should remain

preserved always. In the case of transactions, the integrity of the data is very essential so that the

database remains consistent before and after the transaction. The data should always be correct.

o Example:

https://www.javatpoint.com/dbms-tutorial

Prepard By
D Susmita Page 56

o In the above figure, there are three accounts, A, B, and C, where A is making a transaction T one by one

to both B & C. There are two operations that take place, i.e., Debit and Credit. Account A firstly debits $50

to account B, and the amount in account A is read $300 by B before the transaction. After the successful

transaction T, the available amount in B becomes $150. Now, A debits $20 to account C, and that time,

the value read by C is $250 (that is correct as a debit of $50 has been successfully done to B). The debit

and credit operation from account A to C has been done successfully. We can see that the transaction is

done successfully, and the value is also read correctly. Thus, the data is consistent. In case the value read

by B and C is $300, which means that data is inconsistent because when the debit operation executes, it

will not be consistent.

3) Isolation
o The term 'isolation' means separation. In DBMS, Isolation is the property of a database where no data

should affect the other one and may occur concurrently. In short, the operation on one database should

begin when the operation on the first database gets complete. It means if two operations are being

performed on two different databases, they may not affect the value of one another. In the case of

transactions, when two or more transactions occur simultaneously, the consistency should remain

maintained. Any changes that occur in any particular transaction will not be seen by other transactions

until the change is not committed in the memory.

o Example: If two operations are concurrently running on two different accounts, then the value of both

accounts should not get affected. The value should remain persistent. As you can see in the below

diagram, account A is making T1 and T2 transactions to account B and C, but both are executing

independently without affecting each other. It is known as Isolation.

4) Durability

Prepard By
D Susmita Page 57

o Durability ensures the permanency of something. In DBMS, the term durability ensures that the data after

the successful execution of the operation becomes permanent in the database. The durability of the data

should be so perfect that even if the system fails or leads to a crash, the database still survives. However,

if gets lost, it becomes the responsibility of the recovery manager for ensuring the durability of the

database. For committing the values, the COMMIT command must be used every time we make changes.

o Therefore, the ACID property of DBMS plays a vital role in maintaining the consistency and availability of

data in the database.

o Thus, it was a precise introduction of ACID properties in DBMS. We have discussed these properties in

the transaction section also.

	What is Database
	Database Management System
	Characteristics of DBMS
	Advantages of DBMS
	Disadvantages of DBMS
	File System Approach
	DBMS:
	DBMS Architecture
	Types of DBMS Architecture
	1-Tier Architecture
	2-Tier Architecture
	3-Tier Architecture

	Categories of End Users in DBMS
	ER (Entity Relationship) Diagram in DBMS
	Component of ER Diagram
	1. Entity:
	2. Attribute
	3. Relationship

	Notation of ER diagram
	Mapping Constraints
	One-to-one
	One-to-many
	Many-to-one
	Many-to-many

	Reduction of ER diagram to Table
	Relationship of higher degree
	1. One-to-one
	2. One-to-many
	3. Many-to-many

	Functional Dependency
	Types of Functional dependency
	1. Trivial functional dependency
	2. Non-trivial functional dependency

	Keys
	Types of keys:
	1. Primary key
	2. Candidate key
	3. Super Key
	4. Foreign key
	5. Alternate key
	6. Composite key
	7. Artificial key

	Redundancy in DBMS is having several copies of the same data in the database. Redundancy in DBMS occurs when the database is not normalized. Redundancy causes insertion, deletion, and updation anomalies. Redundancy can be avoided by normalizing the da...
	Example 1:
	Updation / Update Anomaly
	Insertion Anomaly
	Deletion Anomaly
	Example 2:
	Updation / Update Anomaly (1)
	Insertion Anomaly (1)
	Deletion Anomaly (1)

	Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form
	Boyce-Codd Normal Form

	Three schema Architecture
	Objectives of Three schema Architecture
	1. Internal Level
	2. Conceptual Level
	3. External Level

	Mapping between Views

	Data Models
	4) Semistructured Data Model: This type of data model is different from the other three data models (explained above). The semistructured data model allows the data specifications at places where the individual data items of the same type may have dif...
	Data model Schema and Instance
	Data Independence
	1. Logical Data Independence
	2. Physical Data Independence

	Database Languages in DBMS
	Types of Database Languages
	1. Data Definition Language (DDL)
	2. Data Manipulation Language (DML)
	3. Data Control Language (DCL)
	4. Transaction Control Language (TCL)

	ACID Properties in DBMS
	ACID Properties
	1) Atomicity
	2) Consistency
	3) Isolation
	4) Durability

